Search Results

You are looking at 11 - 16 of 16 items for

  • Author or Editor: S.-P. Wang x
  • All content x
Clear All Modify Search

The essential oil extracted from Nardostachys chinensis Batal (NCB) was analyzed by gas chromatography-mass spectrometry (GC-MS) combined with two chemometric resolution methods (CRM), heuristic evolving latent projections (HELP), and selective ion analysis (SIA). Qualitative analysis was performed by comparing the obtained pure mass spectra with those in National Institute of Standards and Technology (NIST) mass spectra database. Identification of some compounds was assisted by comparison of programmed temperature retention indices (PTRIs). The quantitative results were obtained by overall volume integration (OVI). A total of 69 compounds in the essential oil of N. chinensis Batal were identified, accounting for 93.98% of the total content. The major compounds were (−)-spathulenol, epiglobulol, trans-longipinocarveol, and patchouli alcohol which contribute to the antimicrobial and antioxidant activity. The results showed that the efficiency and reliability were greatly improved by use of chemometric techniques and programmed temperature retention index as assistants of GC-MS in identification of the plant essential oil.

Open access

Abstract  

Sorption of Th(IV) on Na-rectorite as a function of pH, ionic strength, soil humic acid (HA) and fulvic acid (FA) are studied under ambient conditions by using a batch technique. The results indicate that the sorption of Th(IV) on Na-rectorite is not only dependent on medium pH values, but also dependent on medium ionic strength and humic substances. Surface complexation and cation competition exchange account for Th(IV) sorption on Na-rectorite. The sorption of Th(IV) on Na-rectorite decreases with the increase on the concentration of NaNO3, Mg(NO3)2 and Ca(NO3)2, and increases with the increasing amount of HA/FA in the suspension/adsorbed on rectorite. Soil HA/FA enhances the sorption of Th(IV) on rectorite at medium pH<4 drastically, but the presence of FA reduces the sorption of Th(IV) at medium pH>6, and HA has no effect on Th(IV) sorption at medium pH>6. An interpretation for the results is attempted, considering the occurrence of different sorption mechanisms.

Restricted access

Abstract  

The thiourea complexes of antimony and bismuth triiodide were synthesized by a direct reaction of antimony and bismuth triiodide with thiourea powder at room temperature. The formula of the complex is MI3[SC(NH2)2]3(M=Sb, Bi). The crystal structure of the complexes belongs to monoclinic system and the lattice parameters are a=1.4772 nm, b=1.6582 nm, c=2.0674 nm and β=90.81 for SbI3(SC(NH2)2)3 and a=1.4009 nm, b=2.0170 nm, c=2.0397 nm and β=90.84 for BiI3[SC(NH2)2]3. The infrared spectra reveal that the trivalent antimony or bismuth ion is coordinated by the nitrogen atom, not the sulfur atom of the thiourea. Thermal analysis shows that there are two times structure rearrangements or phase transformation in the complexes from 100 to 170C.

Restricted access

Influence of different maturity stages and treatments of ethephon, exogenous ABA, and fluridone on the ripening and hormone level of ‘Zhonghuashoutao’ peach during development and post-harvest storage were investigated. The accumulation of endogenous ABA appeared at the onset of ripening and peaked at two weeks before harvest. Fruit firmness decreased, while ethylene release and SSC/TA increased sharply after a maximum peak of ABA, which have triggered the initiation of the fruit ripening. The fruits, harvested at 170 d when fruits have ripened and stored at 20 °C, showed an ethylene climacteric peak, and the pulp started softening normally, and the SSC/TA value increased. Compared with them, the immature green fruits harvested at other dates, could not mature normally due to the lack of normal reciprocity between ABA and ethylene. The ethylene release was promoted by the treatment of exogenous ABA and ethephon during ripening until the endogenous ABA reached a maximum value. However, fluridone treatment showed an inhibitory effect. The above-mentioned changes occurred again in the peach fruits after harvest. The results indicated that both ABA and ethylene play important roles in peach ripening, and their action depended on the ripening stage of peach.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: B. Zhang, S. D. Yao, K. Wang, D. B. Ding, Beijing 100871 P.R. China Beijing 100871 P.R. China, Beijing 100871 P.R. Beijing 100871 P.R. C, Beijing 100871 Beijing 100871, Beijing 1 Beijing 10, and Bei Beij

Summary  

Department of Technical Physics, School of Physics, Peking Unive

Restricted access

New high-molecular-weight glutenin (HMW glutenin) sequences isolated from six Psathyrostachys juncea accessions by thermal asymmetric interlaced PCR differ from previous sequences from this species. They showed novel modifications in all of the structural domains, with unique C-terminal residues, and their N-terminal lengths were the longest among the HMW glutenins reported to date. In their repetitive domains, there were three repeatable motif units: 13-residue [GYWH(/I/Y)YT(/Q)S(/T)VTSPQQ], hexapeptide (PGQGQQ), and tetrapeptide (ITVS). The 13-residue repeats were restricted to the current sequences, while the tetrapeptides were only shared by D-hordein and the current sequences. However, these sequences were not expressed as normal HMW glutenin proteins because an in-frame stop codon located in the C-termini interrupted the intact open reading frames. A phylogenetic analysis supported different origins of the P. juncea HMW glutenin sequences than that revealed by a previous study. The current sequences showed a close relationship with D-hordein but appeared to be more primitive.

Restricted access