Search Results

You are looking at 21 - 30 of 52 items for :

  • Author or Editor: Bernd Spangenberg x
  • Chemistry and Chemical Engineering x
  • All content x
Clear All Modify Search

A 2D-separation of 16 polyaromatic hydrocarbons (PAHs) according to the Environmental Protecting Agency (EPA) standard was introduced. Separation took place on a TLC RP-18 plate (Merck, 1.05559). In the first direction, the plate was developed twice using n-pentane at −20°C as the mobile phase. The mixture acetonitrile-methanol-acetone-water (12:8:3:3, v/v) was used for developing the plate in the second direction. Both developments were carried out over a distance of 43 mm. Further on in this publication, a specific and very sensitive indication method for benzo[a]pyrene and perylene was presented. The method can detect these hazardous compounds even in complicated PAH mixtures. These compounds can be quantified by a simple chemiluminescent reaction with a limit of detection (LOD) of 48 pg per band for perylene and 95 pg per band for benzo[a]pyrene. Although these compounds were separated from all other PAHs in the standard, a separation of both compounds was not possible from one another. The method is suitable for tracing benzo[a]pyrene and/or perylene. The proposed chemiluminescence screening test on PAHs is extremely sensitive but may indicate a false positive result for benzo[a]pyrene.

Restricted access

Improved separation of highly toxic contact herbicides paraquat (1,1′-dimethyl-4-4′-bipyridinium), diquat (6,7-dihydrodipyridol[ 1,2-a:2′,1′-c]pyrazine-5,8-di-ium), difenzoquat (1,2-dimethyl-3,5-diphenyl-1H-pyrazolium-methyl sulfate), mepiquat (1,1-dimethyl-piperidinium), and chloromequat (2-chloroethyltrimethylammonium) were presented by high-performance thin-layer chromatography (HPTLC). The quantification is based on a derivatization reaction, using sodium tetraphenylborate. Measurements were made in the wavelength range from 500 to 535 nm, using a light-emitting diode (LED) for excitation purposes, which emits very dense light at 365 nm. For calculations, a new theory of standard addition method was used, thus leading to a minimal error if exactly the same amount of sample content is added as a standard. The method provides a fast and inexpensive approach to quantification of the five most important quats used for plant protection purposes. The method works reliably because it takes into account losses during pre-treatment procedure. The method meets the European legislation limits for paraquat and diquat in drinking water according to United States Environmental Protection Agency (US EPA) method 549.2 which are 680 ng L−1 for paraquat and 720 ng L−1 for diquat. The method of standard addition in planar chromatography can be beneficially used to reduce systematic errors. Although recovery rates of 33.7% to 65.2% are observed, calculated contents according to the method of standard addition lie between 69% and 127% of the theoretical amounts.

Restricted access

In thin-layer chromatography the development step distributes the sample throughout the layer, a process which strongly affects the reflection signals. The essential requirement for quantitative thinlayer chromatography is not a constant sample concentration but constant sample distribution in each sample spot. This makes evaporation of the mobile phase extremely important, because all tracks of a TLC plate must be dried uniformly. This paper shows that quantitative TLC is possible even if the concentration of the sample is not constant throughout the layer or if the distribution of the sample is not known. With uniform sample distribution, classical Kubelka-Munk theory is valid for isotropic scattering only. In the absence of this constraint classical Kubelka-Munk theory must be extended to situations where scattering is asymmetric. This can be achieved by modification of the original Kubelka-Munk equation. Extended theory is presented which is not only capable of describing asymmetrical scattering in TLC layers but also includes a formula for absorption and fluorescence in diode-array TLC. With this new theory all different formulas for diode-array thin-layer chromatographic evaluation are combined in one expression.

Restricted access

A new formula is presented for transforming fluorescence measurements in accordance with Kubelka-Munk theory. The fluorescence signals, the absorption signals, and data from a selected reference are combined in one expression. Only diode-array techniques can measure all the required data simultaneously to linearize fluorescence data correctly. To prove the new theory HPTLC quantification of the analgesic flupirtine was performed over the mass range 300 to 5000 ng per spot. The fluorescence calibration curve was linear over the whole range. The transformation of fluorescence measurements into linear mass-dependent data extends the technique of in-situ fluorescence analysis to the high concentration range. It also extends Kubelka-Munk theory from absorption to fluorescence analysis. The results presented also emphasize the importance of Kubelka-Munk theory for in-situ measurements in scattering media, especially in planar chromatography.

Restricted access