Search Results

You are looking at 21 - 30 of 73 items for

  • Author or Editor: L. Sun x
  • All content x
Clear All Modify Search

Abstract  

There are many thermoanalytical techniques but only several of them such as thermogravimetric analysis (TG), high resolution thermogravimetric analysis (Hi-Res™ TG), derivative thermogravimetry (DTG), differential thermal analysis (DTA), calorimetry, differential scanning calorimetry (DSC), modulated differential scanning calorimetry (MDSC), evolved gas analysis (EGA), transient thermal analysis (TTA) and thermal conductivity (k) have selected to be discussed in this paper. Simultaneous thermal analysis (STA) is ideal for investigating issues such as the glass transition of modified glasses, binder burnout, dehydration of ceramic materials or decomposition behaviour of inorganic building materials, also with gas analysis. Selected applications of various thermoanalytical techniques from medicine to construction have also been discussed in this paper.

Restricted access

Fluid radiation effects in the transient hot-wire technique

Measurement of thermal conductivity of propane

Journal of Thermal Analysis and Calorimetry
Authors: Y. Shi, L. Sun, F. Tian, J. Venart, and R. Prasad

Abstract  

The transient hot-wire technique is widely used for absolute measurements of the thermal conductivity of fluids. Refinement of this method has resulted in a capability for accurate and simultaneous measurement of both thermal conductivity and thermal diffusivity together with a determination of the specific heat. However, these measurements, especially those for the thermal diffusivity, may be significantly influenced by fluid radiation. The present work investigates the effect of fluid radiation on the measurements of the thermal conductivity of propane. Recently developed corrections have been used to examine this assumption and rectify the influence of even weak fluid radiation. Measurements at 372 K with a hot-wire instrument demonstrate the presence of radiation effects in both the liquid and vapor phase. The influence is much more pronounced in liquid propane at 15.5 MPa than in the vapor phase at 881.5 kPa. The technique employed to obtain radiation-free thermal conductivity measurements is described.

Restricted access

Thermodynamic investigation of room temperature ionic liquid

Heat capacity and thermodynamic functions of BMIBF4

Journal of Thermal Analysis and Calorimetry
Authors: Z. Zhang, Z. Tan, Y. Li, and L. Sun

Abstract  

The molar heat capacities of the room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature X by polynomial equations, C P,m (J K–1 mol–1)= 195.55+47.230 X–3.1533 X 2+4.0733 X 3+3.9126 X 4 [X=(T–125.5)/45.5] for the solid phase (80~171 K), and C P,m (J K–1 mol–1)= 378.62+43.929 X+16.456 X 2–4.6684 X 3–5.5876 X 4 [X=(T–285.5)/104.5] for the liquid phase (181~390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BMIBF4 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass translation of BMIBF4 was observed at 176.24 K. Using oxygen-bomb combustion calorimeter, the molar enthalpy of combustion of BMIBF4 was determined to be Δc H m o= – 5335±17 kJ mol–1. The standard molar enthalpy of formation of BMIBF4 was evaluated to be Δf H m o= –1221.8±4.0 kJ mol–1 at T=298.150±0.001 K.

Restricted access

Abstract  

AP/HTPB based composite propellants with additives such as ammonium oxalate (AO), mixture of ammonium oxalate and strontium carbonate (SC) was investigated by burning rate, TG-DTG and FTIR experiments. The results show that the burning rates of these propellants are decreased significantly. TG-DTG experiments indicate that decomposition temperatures of AP with these additives are increased. Furthermore, the activation energy of the decomposition reaction of AP is also increased in the presence of AO or AO/SC. These results show that AO or AO/SC restrains the decomposition of AP. The burning rates of these propellants are decreased. The burning rate temperature sensitivity of AP/HTPB based propellants is reduced significantly by the addition of AO or AO/SC. But the effect of AO is less than that of AO/SC. AO/SC is better effect to reduce temperature sensitivity and at the same time, to reduce pressure exponent. The reduced heat release at the burning surface of AP/HTPB/AO is responsible for the reduced temperature sensitivity. Synergetic action is probably produced between AO and SC within AP/HTPB based propellants in the pressure range tested. This synergetic effect causes the heat release to reduce and the burning surface temperature to increase. Moreover, it makes the net exothermal reaction of condensed phase become little dependent on T 0. Thus, the burning rate temperature sensitivity is reduced.

Restricted access

Radiation effects in the transient hot-wire technique

Measurement of the thermal conductivity of n -pentane

Journal of Thermal Analysis and Calorimetry
Authors: Y. Shi, L. Sun, J. Venart, and R. Prasad

Abstract  

The transient hot-wire technique is widely used for absolute measurements of the thermal conductivity and thermal diffusivity of fluids. It is well established that fluid radiation effects significantly influence these measurements, especially those for the thermal diffusivity. Corrections for radiation effects are based on the models developed and deviations of the measured data from the ideal line source model. In this paper, the effect of fluid radiation on the measurements of the thermal conductivity of n-pentane is presented. For comparison, the influence of thermal radiation effect on measurement of transparent fluids, such as argon is also shown. The difference between the influence of natural convection and thermal radiation is also demonstrated.

Restricted access

Abstract  

Molar heat capacities of acetaminophen were precisely measured with a small sample precision automated adiabatic calorimeter over the temperature range from 80 to 330 K. A solid-solid transition at 149.96 K was found from the C p,m-T curve. The polynomial functions of C p,.m(J K-1 mol-1) vs. T were established on the heat capacity measurements by means of the least square fitting method. Thermal decomposition processes of acetaminophen have been studied by thermogravimetry. And the thermal decomposition kinetics parameters, such as activation energy E, pre-exponential factor A and reaction order n, were calculated by TG-DTG techniques with the Freeman-Carroll method, Kissinger method and Ozawa method. Accordingly the thermal decomposition kinetics equation of acetaminophen is expressed as: dα/dt=2.67107e-89630/RT(1-α)0.23. The process of fusion has been investigated through DSC. The melting point, molar enthalpy and entropy of fusion are to be (441.890.04) K, 26.490.44 kJ mol-1 and 59.801.01 J K-1 mol-1, respectively.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Y. Y. Di, Z. C. Tan, L. W. Li, S. L. Gao, and L. X. Sun

Abstract

Low-temperature heat capacities of a solid complex Zn(Val)SO4·H2O(s) were measured by a precision automated adiabatic calorimeter over the temperature range between 78 and 373 K. The initial dehydration temperature of the coordination compound was determined to be, T D=327.05 K, by analysis of the heat-capacity curve. The experimental values of molar heat capacities were fitted to a polynomial equation of heat capacities (C p,m) with the reduced temperatures (x), [x=f (T)], by least square method. The polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of the complex relative to the standard reference temperature 298.15 K were given with the interval of 5 K.

Enthalpies of dissolution of the [ZnSO4·7H2O(s)+Val(s)] (Δsol H m,l 0) and the Zn(Val)SO4·H2O(s) (Δsol H m,2 0) in 100.00 mL of 2 mol dm−3 HCl(aq) at T=298.15 K were determined to be, Δsol H m,l 0=(94.588±0.025) kJ mol−1 and Δsol H m,2 0=–(46.118±0.055) kJ mol−1, by means of a homemade isoperibol solution–reaction calorimeter. The standard molar enthalpy of formation of the compound was determined as: Δf H m 0 (Zn(Val)SO4·H2O(s), 298.15 K)=–(1850.97±1.92) kJ mol−1, from the enthalpies of dissolution and other auxiliary thermodynamic data through a Hess thermochemical cycle. Furthermore, the reliability of the Hess thermochemical cycle was verified by comparing UV/Vis spectra and the refractive indexes of solution A (from dissolution of the [ZnSO4·7H2O(s)+Val(s)] mixture in 2 mol dm−3 hydrochloric acid) and solution A’ (from dissolution of the complex Zn(Val)SO4·H2O(s) in 2 mol dm−3 hydrochloric acid).

Restricted access

Abstract  

A series of PA-TD mixtures were prepared and their thermal properties were studied by DSC and thermal conductivity measurement. The phase diagram of the binary system was constructed, which showed an eutectic behavior for the solid-liquid equilibrium line. The eutectic composition of the binary system was at the mass fraction of TD near 0.7 with an eutectic temperature of about 29°C. At TD side, PA was partially miscible in the TD solid matrix and the solid phase transition of TD had an effect on the solidus line. The eutectic composition mixture could be viewed as a new phase change material with large thermal energy storage capacity.

Restricted access

Abstract  

The effects of multi-walled carbon nanotubes (MWNTs) on the phase change enthalpy (ΔH) and the thermal conductivity (κ) of a solid-liquid phase change materials (PCM), palmitic acid (PA), have been investigated. The results showed that both the ΔH and the κ of the composite were lower than that of PA when the loading of MWNTs was small. As the concentration of MWNTs in the composites increased, the ΔH of the composites was slightly improved and then decreased linearly. However, the κ of the composites was monotonously increased from the minimum value. When the loading of MWNTs increased to 5% and no surfactant was added, the κ of the composite was enhanced to be 26% higher than that of PA. The κ of the composite could be enhanced by CTAB instead of SDBS when the loading of MWNTs was small, as SDBS showed no obvious effect on the κ of the composites. Furthermore, the effects of surface modification of MWNTs on the ΔH and the κ of the composites have also been investigated.

Restricted access

Abstract  

The effects of Amoxicillin Sodium and Cefuroxime Sodium on the growth of E. coli DH5α were investigated by microcalorimetry. The metabolic power-time curves of E. coli DH5α growth were determined by using a TAM air isothermal microcalorimeter at 37�C. By evaluation of the obtained parameters, such as growth rate constants (k), inhibitory ratio (I), the maximum heat power (P m) and the time of the maximum heat power (t m), one found that the inhibitory activity of Amoxicillin Sodium vs. E. coli DH5α is enhanced with the increasing of the Amoxicillin Sodium concentration, and the Cefuroxime Sodium has a stimulatory effect on the E. coli DH5α growth when the concentration is about 1 μg mL−1. The IC50 for the Amoxicillin Sodium and the Cefuroxime Sodium are 1.6 and 2.0 μg mL−1, respectively, it implicates that the E. coli DH5α is more sensitive to Amoxicillin Sodium than Cefuroxime Sodium.

Restricted access