Search Results

You are looking at 21 - 27 of 27 items for

  • Author or Editor: Yong Chung x
  • All content x
Clear All Modify Search

Abstract  

The analysis of mineral contents in space foods is needed to obtain an information on a comprehensive elemental composition as well as the investigation on the effects of human nutrition and health based on the dietary intake of mineral elements. Recently, six items of new Korean space foods (KSFs) such as kimchi, bibimbap, bulgogi, a ramen, a mulberry beverage and a fruit punch which was developed by the KAERI, and the contents of more than 15 elements in the samples were examined by using instrumental neutron activation analysis (INAA). Five biological certified reference materials, NIST SRM were used for analytical quality control. The results were compared with those of common Korean foods reported, and these results will be applied toward the identification of irradiated foods.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: Dong-Yong Chung, Heui-Seung Seo, Jae-Won Lee, Han-Beom Yang, Eil-Hee Lee, and Kwang-Wook Kim

Abstract  

A feasibility and basic study to find a possibility to develop such a process for recovering U alone from spent fuel by using the methods of an oxidative leaching and a precipitation of U in high alkaline carbonate media was newly suggested with the characteristics of a highly enhanced proliferation-resistance and more environmental friendliness. This study has focused on the examination of an oxidative leaching of uranium from SIMFUEL powders contained 16 elements (U, Ce, Gd, La, Nd, Pr, Sm, Eu, Y, Mo, Pd, Ru, Zr, Ba, Sr, and Te) using a Na2CO3 solution with hydrogen peroxide. U3O8 was dissolved more rapidly than UO2 in a carbonate solution. However, in the presence of H2O2, we can find out that the leaching rates of the reduced SIMFUEL powder are faster than the oxidized SIMFUEL powder. In carbonate solutions with hydrogen peroxide, uranium oxides were dissolved in the form of uranyl peroxo-carbonato complexes. UO2(O2)x(CO3)y 2−2x−2y, where x/y has 1/2, 2/1.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: Dong-Yong Chung, Eung-Ho Kim, Young-Joon Shin, Jae-Hyung Yoo, Cheong-Song Choi, and Jong-Duk Kim

Abstract  

The decomposition rate of oxalate by hydrogen peroxide has been investigated by a KMnO4 titration method. The rate equation for decomposition of hydrogen peroxide in the aqueous phase is 1n([H2O2]/[H2O2]0)=–k1·t, where k1=0.2, for [H+]<2M, k1=0.2+0.34([H+]–2), for [H+]>2M. As the acidity increases over 2M, an acid catalysis effect appeard. The new rate equation proposed for the decomposition of oxalate by hydrogen peroxide is

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$- \frac{d}{{dt}}X_{[OX]} = k_2 [H_2 O_2 ]_0 (1 - X_{[OX]} )(e^{ - k_1 t} - \frac{{[OX]_0 }}{{[H_2 O_2 ]_0 }}X_{[OX]} )$$ \end{document}
The rate constant for decomposition of oxalate, k2, increased with nitric acid concentration and the effect of hydrogen ion concentration was expressed as k2=a[H+]n, where the values fora andn were a=1.54, n=0.3 at [H+]<2M, a=0.31, n=2.5 at [H+]>2M, respectively.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: Yong-Sam Chung, Sun-Ha Kim, Jong-Hwa Moon, Sung-Yeol Baek, Young-Jin Kim, Hark-Rho Kim, Il-Jin Park, and Kyung-Sik Min

Abstract  

A fast pneumatic transfer system for an instrumental neutron activation analysis and delayed neutron counting system were reconstructed with new designs of a functional improvement at the HANARO research reactor in 2006. The design, conception, operation and control of these systems are described. Also the experimental characteristic parameters by a functional operation test and an irradiation test of these systems, such as the transfer time, the neutron flux, the temperature of the irradiation position with an irradiation time, the radiation dose rate when the rabbit is returned, etc., are reported to provide a user information as well as for the management and safety of the reactor.

Restricted access
Journal of Behavioral Addictions
Authors: Sang Hoon Lee, Jooyeon Jamie Im, Jin Kyoung Oh, Eun Kyoung Choi, Sujung Yoon, Marom Bikson, In-Uk Song, Hyeonseok Jeong, and Yong-An Chung

Aim

Excessive use of online games can have negative influences on mental health and daily functioning. Although the effects of transcranial direct current stimulation (tDCS) have been investigated for the treatment of addiction, it has not been evaluated for excessive online game use. This study aimed to investigate the feasibility and tolerability of tDCS over the dorsolateral prefrontal cortex (DLPFC) in online gamers.

Methods

A total of 15 online gamers received 12 active tDCS sessions over the DLPFC (anodal left/cathodal right, 2 mA for 30 min, 3 times per week for 4 weeks). Before and after tDCS sessions, all participants underwent 18F-fluoro-2-deoxyglucose positron emission tomography scans and completed the Internet Addiction Test (IAT), Brief Self Control Scale (BSCS), and Beck Depression Inventory-II (BDI-II).

Results

After tDCS sessions, weekly hours spent on games (p = .02) and scores of IAT (p < .001) and BDI-II (p = .01) were decreased, whereas BSCS score was increased (p = .01). Increases in self-control were associated with decreases in both addiction severity (p = .002) and time spent on games (p = .02). Moreover, abnormal right-greater-than-left asymmetry of regional cerebral glucose metabolism in the DLPFC was partially alleviated (p = .04).

Conclusions

Our preliminary results suggest that tDCS may be useful for reducing online game use by improving interhemispheric balance of glucose metabolism in the DLPFC and enhancing self-control. Larger sham-controlled studies with longer follow-up period are warranted to validate the efficacy of tDCS in gamers.

Open access
Journal of Behavioral Addictions
Authors: Hyeonseok Jeong, Jin Kyoung Oh, Eun Kyoung Choi, Jooyeon Jamie Im, Sujung Yoon, Helena Knotkova, Marom Bikson, In-Uk Song, Sang Hoon Lee, and Yong-An Chung

Abstract

Background and aims

Some online gamers may encounter difficulties in controlling their gaming behavior. Previous studies have demonstrated beneficial effects of transcranial direct current stimulation (tDCS) on various kinds of addiction. This study investigated the effects of tDCS on addictive behavior and regional cerebral metabolic rate of glucose (rCMRglu) in problematic online gamers.

Methods

Problematic online gamers were randomized and received 12 sessions of either active (n = 13) or sham tDCS (n = 13) to the dorsolateral prefrontal cortex over 4 weeks (anode F3/cathode F4, 2 mA for 30 min, 3 sessions per week). Participants underwent brain 18F-fluoro-2-deoxyglucose positron emission tomography scans and completed questionnaires including the Internet Addiction Test (IAT), Brief Self-Control Scale (BSCS), and Behavioral Inhibition System/Behavioral Activation System scales (BIS/BAS) at the baseline and 4-week follow-up.

Results

Significant decreases in time spent on gaming (P = 0.005), BIS (P = 0.03), BAS-fun seeking (P = 0.04), and BAS-reward responsiveness (P = 0.01), and increases in BSCS (P = 0.03) were found in the active tDCS group, while decreases in IAT were shown in both groups (P < 0.001). Group-by-time interaction effects were not significant for these measures. Increases in BSCS scores were correlated with decreases in IAT scores in the active group (β = −0.85, P < 0.001). rCMRglu in the left putamen, pallidum, and insula was increased in the active group compared to the sham group (P for interaction < 0.001).

Discussion and conclusions

tDCS may be beneficial for problematic online gaming potentially through changes in self-control, motivation, and striatal/insular metabolism. Further larger studies with longer follow-up period are warranted to confirm our findings.

Open access
Acta Veterinaria Hungarica
Authors: Sung Jae Kim, Van Giap Nguyen, Cheong Ung Kim, Bong Kyun Park, Thi-My Le Huynh, Sook Shin, Woo Kyung Jung, Yong Ho Park, and Hee Chun Chung

Abstract

Porcine epidemic diarrhoea virus (PEDV) is one of the major pathogens causing acute enteritis, which is characterised by vomiting and watery diarrhoea and commonly leads to high rates of mortality and morbidity in suckling piglets. Chitosan has been regarded as a promising natural disinfectant. In this study, the disinfectant effect and mammalian-cell toxicity of chitosan were evaluated against PEDV using Vero cells. A 0.01% solution of chitosan was determined to be an effective disinfectant. In addition, no evidence of toxicity was observed during the cell toxicity test; on the contrary, chitosan promoted cell proliferation. In conclusion, chitosan is a promising candidate for an effective and safe disinfectant against PEDV as well as other coronaviruses.

Open access