Search Results

You are looking at 21 - 22 of 22 items for

  • Author or Editor: Zheng Yu x
  • Refine by Access: All Content x
Clear All Modify Search
Cereal Research Communications
Authors: Y.P. Jing, D.T. Liu, X.R. Yu, F. Xiong, D.L. Li, Y.K. Zheng, Y.F. Hao, Y.J. Gu, and Z. Wang

The objective of the present study was to understand the developmental regularity of wheat endosperm cells at different Days After Pollination (DAP) using microscopic and histochemical methods. Resin semi-thin sections of the endosperm and the enzymatically dissociated Starchy Endosperm Cells (SECs) were observed under a light microscope. The results showed that: (1) SECs were irregular-shaped and had two types of starch granules: large oval-shaped A-type starch granules and small spherical B-type starch granules. (2) The growth shape of SECs was referred to as S-curve and the fastest cell growth period was at 16–24 DAP. (3) The largest increase and growth of A-type starch granules were mainly at 4–16 DAP. B-type starch granules increased rapidly after 16 DAP and made up over 90% of the total starch granules in SEC during the late stage of endosperm development. (4) The nuclei of SEC deformed and degenerated during the middle and late stages of endosperm development and eventually disappeared. However, starch granules still increased and grew after the cell nuclei had degenerated. The investigations showed the development regularity of starch endosperm cells and starch granules, thereby improving the understanding of wheat endosperm development.

Restricted access
Acta Chromatographica
Authors: Qinghua Weng, Lianguo Chen, Luxin Ye, Xiaojie Lu, Zheng Yu, Congcong Wen, Yichuan Chen, and Gang Huang

The aim of this study was to establish a rapid, sensitive, and selective ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method to quantify the concentrations of licochalcone A and applicate the technique to its pharmacokinetic study. Analytes were separated on an UPLC ethylene bridged hybrid (BEH) C18 column (2.1 mm × 50 mm, 1.7 μm). The mobile phase was consisted of acetontrile and 0.1% formic acid with a flow rate of 0.4 mL/min in a gradient elution mode. Multiple-reaction monitoring (MRM) was carried out in a negative mode for licochalcone A (m/z 337.2 → 119.7) and the internal standard (IS) (m/z 609.0 → 300.9). The linearity of licochalcone A was great from 0.53 to 530 ng/mL. The lower limit of quantification and the lower limit of detection were 0.53 ng/mL and 0.26 ng/mL, respectively. The intra-day precision was less than 14%, and the inter-day precision was no more than 11%. The accuracy was from 91.5% to 113.9%, the recovery was over 90.5%, and the matrix effect was between 84.5% and 89.7%. The results of stability were in an acceptable range. The bioavailability was only 3.3%, exhibiting poor absorption. The developed method was successfully applicable for determining the concentrations of licochalcone A and its pharmacokinetic study.

Open access