Search Results

You are looking at 31 - 40 of 52 items for

  • Author or Editor: Bernd Spangenberg x
  • All content x
Clear All Modify Search

Summary

We present a planar chromatographic separation method for the compounds caffeine, artemisinin, and equol, separated on high-performance thin-layer chromatography (HPTLC) silica gel plates. As solvents for separation, methyl t-butyl ether and cyclohexane (1:1, V/V) have been used for equol, cyclohexane and ethyl acetate (7:3, V/V) for artemisinin, and ethyl acetate and acetone (7:3, V/V) for caffeine. After separation, the plate was scanned with a very specific time of flight-direct analysis in real time-mass spectrometry (TOF-DART-MS) system using the (M + 1)+ signals of equol, artemisinin, and caffeine. The (M + 1) peak of artemisinin at 283.13 m/z is clearly detectable, which is the proof that DART-MS is applicable for the quantitative determination of rather instable molecules. The planar set-up of DART source, HPTLC plate and detector inlet in a line showed higher sensitivities compared to desorption at an angle. The optimal detector voltage increases with the molar mass of the analyte, thus an individual determination of optimal detector voltage setting for the different analyte is recommended to achieve the best possible measurement conditions. In conclusion, DART-MS detection in combination with an HPTLC separation allows very specific quantification of all three compounds.

Restricted access
Restricted access

In-situ densitometry for qualitative or quantitative purposes is a key step in thin-layer chromatography (TLC). It is a simple means of quantification by measurement of the optical density of the separated spots directly on the plate. A new scanner has been developed which is capable of measuring TLC or HPTLC (high-performance thin-layer chromatography) plates simultaneously at different wavelengths without damaging the plate surface. Fiber optics and special fiber interfaces are used in combination with a diode-array detector. With this new scanner sophisticated plate evaluation is now possible, which enables use of chemometric methods in HPTLC. Different regression models have been introduced which enable appropriate evaluation of all analytical questions. Fluorescent measurements are possible without filters or special lamps and signal-to-noise ratios can be improved by wavelength bundling. Because of the richly structured spectra obtained from PAH, diode-array HPTLC enables quantification of all 16 EPA PAH on one track. Although the separation is incomplete all 16 compounds can be quantified by use of suitable wavelengths. All these aspects are enable substantial improvement of in-situ quantitative densitometric analysis.

Restricted access

We present a videodensitometric quantification method for methadone in syrup, separated by thin-layer chromatography (TLC). The quantification is based on a derivation reaction with Dragendorff reagent. Measurements were carried out using a 16-bit flatbed scanner. The range of linearity covers two magnitudes of power using the Kubelka-Munk expression for data transformation. The separation method is inexpensive, fast, and reliable.

Restricted access

We present a two-dimensional (2D) planar chromatographic separation method for phytoestrogenic active compounds on RP-18 W (Merck, 1.14296) phase. It could be shown that an ethanolic extract of liquorice (Glycyrrhiza glabra) roots contains four phytoestrogenic active compounds. As solvent, in the first direction, the mix of hexane, ethyl acetate, and acetone (45:15:10, v/v) was used, and, in the second direction, that of acetone and water (15:10, v/v) was used. After separation, a modified yeast estrogen screen (YES) test was applied, using the yeast strain Saccharomyces cerevisiae BJ3505. The test strain (according to McDonnell) contains the estrogen receptor. Its activation by estrogen active compounds is measured by inducing the reporter gene lacZ which encodes the enzyme β-galactosidase. This enzyme activity is determined on plate by using the fluorescent substrate MUG (4-methylumbelliferyl-β-d-galactopyranoside). The enzyme can also hydrolyse X-β-Gal (5-bromo-4-chloro-3-indoxyl-β-d-galactopyranosid) into β-galactose and 5-bromo-4-chloro-3-indoxyl. The indoxyl compound is oxidized by oxygen forming the deep-blue dye 5,5β-dibromo-4,4β-dichloro-indigo which allows to detect phytoestrogenic activity more specific in the presence of native fluorescing compounds.

Restricted access
Restricted access

We present a video-densitometric quantification method in combination with diode-array quantification for the methyl-, ethyl-, propyl-, and butylparaben in cosmetics. These parabens were separated on cyanopropyl bonded plates using water-acetonitrile-dioxane-ethanol-NH3 (25%) (8:2:1:1:0.05, v/v) as mobile phase. The quantification is based on UV-measurements at 255 nm and a bioeffectively-linked analysis using Vibrio fischeri bacteria. Within 5 min, a Tidas S 700 diode-array scanner (J&M, Aalen, Germany) scans 8 tracks and thus measures in total 5600 spectra in the wavelengths range from 190 to 1000 nm. The quantification range for all these parabens is from 20 to 400 ng per band, measured at 255 nm. In the V. fischeri assay a CCD-camera registers the white light of the light-emitting bacteria within 10 min. All parabens effectively suppress the bacterial light emission which can be used for quantifying within a linear range from 100 to 400 ng. Measurements were carried out using a 16-bit MicroChemi chemiluminescence system (biostep GmbH, Jahnsdorf, Germany), using a CCD camera with 4.19 megapixels. The range of linearity is achieved because the extended Kubelka-Munk expression was used for data transformation. The separation method is inexpensive, fast, and reliable.

Restricted access