Search Results

You are looking at 31 - 40 of 50 items for

  • Author or Editor: K. Wang x
  • All content x
Clear All Modify Search

Summary

Chestnut exhibits anti-inflammatory, styptic, anti-diarrhea, and analgestic effects as a traditional Chinese medicine. There is increasing evidence that shows that the consumption of chestnuts has become more important in human nutrition due to the health benefits provided by the antioxidants. The phenolic compounds are responsible for major bioactivities, such as anti-tumor and anti-oxidation. A high-performance liquid chromatography (HPLC) method with diode array detection (DAD) was established for the simultaneous determination of six phenolic compounds (gallic acid, GA; protocatechuic acid, PR; catechin, CA; epicatechin, EP; quercetin, QU; kaempferol, KA) in Chinese chestnut (Castanea mollissima blume) kernel. The sample followed by separation on Eclipse XDB-C18 column (150 × 4.6 mm, id., 5 μm) with gradient elution of methanol-1.0% acetate acid solution as a mobile phase, at a temperature of 30°C, under the ratio of 1.2 mL min−1, with 5 μL injection volume, and multi-wavelength synthesis was used with DAD. The correlation coefficients were larger than 0.999, the recoveries were 97.58% for GA, 100.41% for PA, 96.23% for CA, 101.38% for QU, 99.15% for EP, and 98.60% for KA, relative standard deviation (RSD) were 1.04% for GA, 1.21% for PA, 1.09% for CA, 1.19% for QU, 1.06% for EP, and 1.20% for KA. This method was applied for the determination of phenolics in chestnut kernel and was found to be fast, sensitive, and suitable.

Full access

Abstract

Pyrolysis and combustion characteristics of bio-oil derived from swine manure were investigated using thermogravimetry techniques. Thermogravimetric analysis of the bio-oils were carried out in O2 and N2 atmosphere under different heating rates (5–20 °C/min) to a maximum temperature of 900 °C. The results indicate that the combustion processes of bio-oil occurred in three stages, namely the water and the lighter compound evaporation, i.e., the release of the volatile compounds, ignition and burning of the heavier compounds (mainly carbon), and finally decomposition of the carbonate compounds. The effect of heating rate was also studied, and higher heating rates were found to facilitate the combustion process. Different reaction kinetic mechanisms were used to treat TG data, and showed that diffusion models are the best fit for describing the combustion of bio-oil in air. The kinetic parameters of the three stages were determined using Coats–Redfern method. The study provided reliable basic data for the burning of bio-oil.

Restricted access

The geographical patterns of tree species richness in forest communities have been studied widely, but little is known about the geographical variation of the estimated species richness and minimum areas using species-area curves. A differential technique based on the species-area relationships (SAR) was developed for estimating the minimum area (Amin) capturing 60- 80% of the species in each plot, which is an important characteristic of a forest community. The relationship between estimated species richness (ESR) from the SAR and the corresponding minimum area is described by the linear model ESR = 0.0051×Amin (R2 = 0.98, p < 0.0001). Both the ESR and the minimum area exhibit similar geographical variations with a significant increase along altitudinal and a decrease along latitudinal gradients. The spatial variations of the ESR were partitioned into three geographical components and their combined effects. Altitude accounted for 40% and 45% of the total variation in the ESR and the minimum area, respectively. While latitude accounted for 69% and 61% of the total variation in the ESR and the minimum area, respectively. Thus, latitude is the main determinant which influences the geographical variation of the ESR. As far as we know, this study presents the first report of the geographical patterns of the minimum area in temperate forests.

Restricted access

The present study was performed to investigate the effect of β-aminobutyric acid (BABA) treatment on defence activation in grape berries and to analyse its cellular mechanism. The results implied that BABA treatment at an effective concentration of 20 mM significantly inhibited gray mould rot caused by Botrytis cinerea in grape berries by inducing resistance. Accordingly, 20 mM BABA triggered a priming defence in grape suspension cells, since only the BABA-treated cells exhibited an accelerated ability for augmenting defence responses upon the pathogen inoculation. The primed cellular reactions were related to an early H2O2 burst, prompt accumulation of stilbene phytoalexins and activation of PR genes. Thus, we assume that 20 mM BABA can induce resistance to B. cinerea infection in intact grape berries perhaps via intercellular priming defence. Moreover, the BABA-induced priming defence is verified, because no negative effects on cell growth, anthocyanin synthesis, and quality impairment in either grape cells or intact berries were observed under low pathogenic pressure.

Restricted access

This study was conducted to assess the effects of 2,4-epibrassionolide (EBR) on mold decay caused by Rhizopus stolonifer and its capability to activate biochemical defense reactions in postharvest peaches. The treatment of EBR at 5 μM possessed the optimum effectiveness on inhibiting the Rhizopus rot in peach fruit among all treatments. The EBR treatment significantly up-regulated the expression levels of a set of defense-related enzymes and PR genes that included PpCHI, PpGns1, PpPAL, PpNPR1, PpPR1 and PpPR4 as well as led to an enhancement for biosynthesis of phenolics and lignins in peaches during the incubation at 20 °C. Interestingly, the EBR-treated peaches exhibited more striking expressions of PR genes and accumulation of antifungal compounds upon inoculation with the pathogen, indicating a priming defense could be activated by EBR. On the other hand, 5 μM EBR exhibited direct toxicity on fungal proliferation of R. stolonifer in vitro. Thus, we concluded that 5 μM EBR inhibited the Rhizopus rot in peach fruit probably by a direct inhibitory effect on pathogen growth and an indirect induction of a priming resistance. These findings provided a potential alternative for control of fungal infection in peaches during the postharvest storage.

Restricted access

Abstract

Renal injury is reported to have a high mortality rate. Additionally, there are several limitations to current conventional treatments that are used to manage it. This study evaluated the protective effect of hesperidin against ischemia/reperfusion (I/R)-induced kidney injury in rats. Renal injury was induced by generating I/R in kidney tissues. Rats were then treated with hesperidin at a dose of 10 or 20 mg/kg intravenously 1 day after surgery for a period of 14 days. The effect of hesperidin on renal function, serum mediators of inflammation, and levels of oxidative stress in renal tissues were observed in rat kidney tissues after I/R-induced kidney injury. Moreover, protein expression and mRNA expression in kidney tissues were determined using Western blotting and RT-PCR. Hematoxylin and eosin (H&E) staining was done for histopathological observation of kidney tissues. The data suggest that the levels of blood urea nitrogen (BUN) and creatinine in the serum of hesperidin-treated rats were lower than in the I/R group. Treatment with hesperidin also ameliorated the altered level of inflammatory mediators and oxidative stress in I/R-induced renal-injured rats. The expression of p-IκBα, caspase-3, NF-κB p65, Toll-like receptor 4 (TLR-4) protein, TLR-4 mRNA, and inducible nitric oxide synthase (iNOS) was significantly reduced in the renal tissues of hesperidin-treated rats. Histopathological findings also revealed that treatment with hesperidin attenuated the renal injury in I/R kidney-injured rats. In conclusion, our results suggest that hesperidin protects against renal injury induced by I/R by involving TLR-4/NF-κB/iNOS signaling.

Restricted access

Influence of different maturity stages and treatments of ethephon, exogenous ABA, and fluridone on the ripening and hormone level of ‘Zhonghuashoutao’ peach during development and post-harvest storage were investigated. The accumulation of endogenous ABA appeared at the onset of ripening and peaked at two weeks before harvest. Fruit firmness decreased, while ethylene release and SSC/TA increased sharply after a maximum peak of ABA, which have triggered the initiation of the fruit ripening. The fruits, harvested at 170 d when fruits have ripened and stored at 20 °C, showed an ethylene climacteric peak, and the pulp started softening normally, and the SSC/TA value increased. Compared with them, the immature green fruits harvested at other dates, could not mature normally due to the lack of normal reciprocity between ABA and ethylene. The ethylene release was promoted by the treatment of exogenous ABA and ethephon during ripening until the endogenous ABA reached a maximum value. However, fluridone treatment showed an inhibitory effect. The above-mentioned changes occurred again in the peach fruits after harvest. The results indicated that both ABA and ethylene play important roles in peach ripening, and their action depended on the ripening stage of peach.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: Wen-Jin Cherng, Bor-Tsung Hsieh, Chao-Hung Wang, Ming-Jui Hung, K. Cheng, Tsu-Tsen Yen, and Ning Lee

Abstract  

The effects on vascular restenosis of intravascular radiation delivery from 188Rhenium (Re)-perrhenate liquid-filled balloon through beta-particle radiation are controversial. To determine the effect of beta-radiation on vascular injury in hypercholesterolemic rabbits, thirty rabbits fed with a high cholesterol diet were enrolled into this study. All the rabbits underwent percutaneous transluminal balloon overstretch over left iliac artery. After balloon overstretch, the catheter was withdrawn and immediately followed by irradiation using low dose 188Re solution (10 Gray) in the vascular wall 0.5 mm distal to intimal surface. After 2 and 6 weeks, arteries were harvested for histological and immunological analysis. This rabbit study suggest that endovascular 188Re low dose irradiation at the non-injury segment of iliac artery may enhance intima hyperplasia and smooth muscle cell proliferation.

Restricted access

High-yield common buckwheat ‘cv. Fengtian 1’ (FT1) and tartary buckwheat ‘cv. Jingqiao 2’ (JQ2) were selected to investigate the characteristics of the grain-filling process and starch accumulation of high-yield buckwheat. FT1 had an average yield that was 43.0% higher than that of the control ‘cv. Tongliaobendixiaoli’ (TLBDXL) in two growing seasons, while JQ2 had an average yield that was 27.3% higher than that of the control ‘cv. Chuanqiao 2’ (CQ2). The Richards equation was utilized to evaluate the grain-filling process of buckwheat. Both FT1 and JQ2 showed higher values of initial growth power and final grain weight and longer linear increase phase, compared with respective control. These values suggest that the higher initial increasing rate and the longer active growth period during grain filling play important roles to increase buckwheat yield. Similar patterns of starch, amylose and amylopectin accumulation were detected in common buckwheat, leading to similar concentration of each constituent at maturity in FT1 and TLBDXL. Tartary buckwheat showed an increasing accumulation pattern of amylose in developing seeds, which differed from that of starch and amylopectin. This pattern led to a significant difference of the concentrations of amylose and amylopectin at maturity between JQ2 and CQ2, the mechanisms of which remained unclear. Nevertheless, both FT1 and JQ2 showed increased starch, amylose, and amylopectin accumulation during the physiological maturity of grains. The results suggest that prolonging the active grain-filling period to increase carbohydrate partitioning from source to seed sink can be an effective strategy to improve buckwheat yield.

Restricted access
Cereal Research Communications
Authors: B.L. Béres, N.Z. Lupwayi, F.J. Larney, B. Ellert, E.G. Smith, T.K. Turkington, D. Pageau, K. Semagn, and Z. Wang

Research indicates that not all crops respond similarly to cropping diversity and the response of triticale (× Triticosecale ssp.) has not been documented. We investigated the effects of rotational diversity on cereals in cropping sequences with canola (Brassica napus L.), field pea (Pisum sativum L.), or an intercrop (triticale:field pea). Six crop rotations were established consisting of two, 2-yr low diversity rotations (LDR) (continuous triticale (T-T_LDR) and triticale-wheat (Triticum aestivum L.) (T-W_LDR)); three, 2-yr moderate diversity rotations (MDR) (triticale-field pea (T-P_MDR), triticale-canola (T-C_MDR), and a triticale: field pea intercrop (T- in P_MDR)); and one, 3-yr high diversity rotation (HDR) (canola-triticale-field pea (C-T-P_HDR)). The study was established in Lethbridge, Alberta (irrigated and rainfed); Swift Current (rainfed) and Canora (rainfed), Saskatchewan, Canada; and carried out from 2008 to 2014. Triticale grain yield for the 3-yr HDR was superior over the LDR rotations and the MDR triticale-field pea system; however, results were similar for triticale-canola, and removal of canola from the system caused a yield drag in triticale. Triticale biomass was superior for the 3-yr HDR. Moreover, along with improved triticale grain yield, the 3-yr HDR provided greater yield stability across environments. High rotational diversity (C-T-P_HDR) resulted in the highest soil microbial community and soil carbon concentration, whereas continuous triticale provided the lowest. Net economic returns were also superior for C-T-P_HDR ($670 ha–1) and the lowest for T-W_LDR ($458 ha–1). Overall, triticale responded positively to increased rotational diversity and displayed greater stability with the inclusion of field pea, leading to improved profitability and sustainability of the system.

Restricted access