Search Results

You are looking at 31 - 40 of 51 items for

  • Author or Editor: T. Wang x
  • All content x
Clear All Modify Search

The present study was performed to investigate the effect of β-aminobutyric acid (BABA) treatment on defence activation in grape berries and to analyse its cellular mechanism. The results implied that BABA treatment at an effective concentration of 20 mM significantly inhibited gray mould rot caused by Botrytis cinerea in grape berries by inducing resistance. Accordingly, 20 mM BABA triggered a priming defence in grape suspension cells, since only the BABA-treated cells exhibited an accelerated ability for augmenting defence responses upon the pathogen inoculation. The primed cellular reactions were related to an early H2O2 burst, prompt accumulation of stilbene phytoalexins and activation of PR genes. Thus, we assume that 20 mM BABA can induce resistance to B. cinerea infection in intact grape berries perhaps via intercellular priming defence. Moreover, the BABA-induced priming defence is verified, because no negative effects on cell growth, anthocyanin synthesis, and quality impairment in either grape cells or intact berries were observed under low pathogenic pressure.

Restricted access

This study was conducted to assess the effects of 2,4-epibrassionolide (EBR) on mold decay caused by Rhizopus stolonifer and its capability to activate biochemical defense reactions in postharvest peaches. The treatment of EBR at 5 μM possessed the optimum effectiveness on inhibiting the Rhizopus rot in peach fruit among all treatments. The EBR treatment significantly up-regulated the expression levels of a set of defense-related enzymes and PR genes that included PpCHI, PpGns1, PpPAL, PpNPR1, PpPR1 and PpPR4 as well as led to an enhancement for biosynthesis of phenolics and lignins in peaches during the incubation at 20 °C. Interestingly, the EBR-treated peaches exhibited more striking expressions of PR genes and accumulation of antifungal compounds upon inoculation with the pathogen, indicating a priming defense could be activated by EBR. On the other hand, 5 μM EBR exhibited direct toxicity on fungal proliferation of R. stolonifer in vitro. Thus, we concluded that 5 μM EBR inhibited the Rhizopus rot in peach fruit probably by a direct inhibitory effect on pathogen growth and an indirect induction of a priming resistance. These findings provided a potential alternative for control of fungal infection in peaches during the postharvest storage.

Restricted access

Abstract  

The heat capacities of 2-benzoylpyridine were measured with an automated adiabatic calorimeter over the temperature range from 80 to 340 K. The melting point, molar enthalpy, Δfus H m, and entropy, Δfus S m, of fusion of this compound were determined to be 316.49±0.04 K, 20.91±0.03 kJ mol–1 and 66.07±0.05 J mol–1 K–1, respectively. The purity of the compound was calculated to be 99.60 mol% by using the fractional melting technique. The thermodynamic functions (H TH 298.15) and (S TS 298.15) were calculated based on the heat capacity measurements in the temperature range of 80–340 K with an interval of 5 K. The thermal properties of the compound were further investigated by differential scanning calorimetry (DSC). From the DSC curve, the temperature corresponding to the maximum evaporation rate, the molar enthalpy and entropy of evaporation were determined to be 556.3±0.1 K, 51.3±0.2 kJ mol–1 and 92.2±0.4 J K–1 mol–1, respectively, under the experimental conditions.

Restricted access

Waxy wheat (Triticum aestivum L.) is grown throughout the world for its specific quality. Fertilization and planting density are two crucial factors that affect waxy wheat yield and photosynthetic capacity. The objectives of the research were to determine the effects of fertilization and planting density on photosynthetic characteristics, yield, and yield components of waxy wheat, including Yield, SSR, TGW, GNPP, GWPP, PH, HI, Pn, Gs, Ci, E and WUE using the method of field experiment, in which there were three levels (150, 300, and 450 kg ha−1) of fertilizer application rate and three levels (1.35, 1.8, and 2.25 × 106 plants ha−1) of planting density. The results suggested that photosynthetic characteristics, yield, and yield components had close relationship with fertilization levels and planting density. Under the same plant density, with the increase of fertilization, Yield, SSR, TGW, GNPP, GWPP, HI, Pn, Gs, E and WUE increased and then decreased, PH increased, but Ci decreased. Under the same fertilization, with the increase of plant density, Yield, SSR, TGW, GNPP, GWPP, HI increased and then decreased, PH, Pn, Gs and E increased, PH and WUE declined. The results also showed that F2 (300 kg ha−1) and D2 (1.8 × 106 plants ha−1) was a better match in this experiment, which could obtain a higher grain yield 4961.61 kg ha−1. Consequently, this combination of fertilizer application rate and plant densities are useful to get high yield of waxy wheat.

Restricted access
Acta Alimentaria
Authors: M.Y. Jiang, Z.R. Wang, K.W. Chen, J.Q. Kan, K.T. Wang, Zs. Zalán, F. Hegyi, K. Takács, and M.Y. Du

After suffering from mechanical injury and fungal infection, grapes are perishable. Botrytis cinerea, the causal agent of gray mould, is a critical pathogen for grapes. In this study, the inhibitory effect of Pseudomonas fluorescens on the formation of gray mould on grapes during the postharvest storage was investigated on “Kyoho” grape. The results suggest that a living cell suspension of P. fluorescens significantly inhibited spore germination of B. cinerea, and significantly reduced the incidence of grape gray mould. Moreover, compared with the control, the fruit inoculated with P. fluorescens had elevated activities of polyphenol oxidase (PPO), peroxidase (POD), catalase (CAT), phenylalanine ammonia-lyase (PAL), chitinase (CHI), and β-1,3-glucanase (GLU). Increase in enzyme activity correlated with enhanced host resistance. In addition, there was little difference in storage quality between the treated group and control group, indicating no adverse effects of the induced defence response on fruit quality.

Open access
Journal of Thermal Analysis and Calorimetry
Authors: M. Wang, Y. Sawada, K. Saito, S. Horie, T. Uchida, M. Ohtsuka, S. Seki, S. Kobayashi, T. Arii, A. Kishi, T. Takahashi, Y. Nishimoto, T. Wakimoto, K. Monzen, I. Kashima, T. Nishikiori, L. Sun, and R. Ozao

Abstract  

The thermal change of the tris(8-hydroxyquinolinato)aluminum (Alq3) is currently investigated by XRD-DSC and TG. The phase transition of Alq3 from α-phase to γ-phase takes place at 643–669 K. A very sharp peak with the peak temperature at approx. 709 K is ascribed to the melting of the Alq3. The decomposition of the Alq3 was observed accompanied with the melting and evaporation at >703K. The effect of the atmospheres on the mass loss procedure was studied by TG. It was found that thermal process of Alq3 was strongly influenced by the partial pressure of water vapor in the atmosphere instead of oxygen.

Restricted access

Abstract  

The effects of fullerenes, including fellerene soot (FS), extracted fullerene soot (EFS) and pure C60 on the thermal decomposition of ammonium perchlorate (AP) compared with traditional carbon black (CB) catalyst has been studied by employing thermogravimetry (TG), differential thermal analysis (DTA), infrared spectroscopy (IR) and ignition temperature experiments. The results showed that the addition of CB and FS to AP reduced the activation energy as well as the temperature at maximum decomposition rate, but that of EFS and pure C60 had little effect on the thermal decomposition of AP, and among all catalysts, FS was the best one.

Restricted access

Barley stripe mosaic virus (BSMV)-based virus induced gene silencing (VIGS) is an effective strategy for rapid determination of functional genes in wheat plants. ERECTA genes are reported to regulate stomatal pattern of plants, and manipulation of TaERECTA (a homologue of ERECTA in bread wheat) is a potential route for investigating stomatal development. Here, the leucine-rich repeat domains (LRRs) and transmembrane domains of TaERECTA were selected to gain BSMV:ER-LR and BSMV:ER-TM constructs, respectively, targeting TaERECTA for silencing in wheat cultivars ‘Bobwhite’ and ‘Cadenza’, to identify the function of TaERECTA on stomatal patterns. The results showed that reduced expression of TaERECTA caused an increased stomatal and epidermal cell density by average 13.5% and 3.3%, respectively, due to the significantly reduced size of leaf epidermal and stomatal cells, and this led to an increase in stomatal conductance. These suggest that modulation of TaERECTA offers further opportunities in stomatal engineering for the adaptation of photosynthesis in wheat.

Restricted access

Are costly apologies universally perceived as being sincere?

A test of the costly apology-perceived sincerity relationship in seven countries

Journal of Evolutionary Psychology
Authors: Yohsuke Ohtsubo, Esuka Watanabe, Jiyoon Kim, John T. Kulas, Hamdi Muluk, Gabriela Nazar, Feixue Wang, and Jingyu Zhang

Abstract

After inadvertently committing an interpersonal transgression, an offender might make an effortful apology (e.g. cancelling an important meeting to make an apology as soon as possible). Such costly apologies signal the apologiser's sincere intention to restore the endangered relationship. The present study investigated this costly signalling model of apology across seven countries (Chile, China, Indonesia, Japan, the Netherlands, South Korea and the U.S.). Participants were asked to imagine that a friend had committed an interpersonal transgression against them and had then apologised in either a costly or non-costly fashion. The results showed that costly apologies were perceived to be significantly more sincere than no cost apologies in the all seven countries. We further investigated whether religious beliefs would moderate the effect of costly apologies. Consistent with our prediction and evolutionary hypothesis, costly apologies were perceived to be significantly more sincere than no cost apologies across religious groups (Buddhists, Christians, and Muslims).

Restricted access

Isolates of Pestalozzia theae Saw. and Trichoderma spp. were collected from Bangladesh Tea Research Institute (BTRI) farm area, Bangladesh. The cultural morphology and antagonistic potentiality of Trichoderma spp. against grey blight pathogen Pestalozzia theae was studied for tea cultivation. The antagonistic potentiality of Trichoderma spp., against Pestalozzia theae showed maximum (inhibition 84.45±0.77%) after 72 hrs of inoculation under in vitro condition followed by 76.02±3.50% after 24 hrs of inoculation. This study revealed that Trichoderma strain was highly effective to control Pestalozzia theae, the causal agent of grey blight disease of tea.

Restricted access