Search Results

You are looking at 41 - 42 of 42 items for

  • Author or Editor: E. Schweikert x
  • All content x
Clear All Modify Search

On the determination of phosphorus via charged particle activation analysis

II. Destructive and nondestructive determination of phosphorus in different matrices

Journal of Radioanalytical and Nuclear Chemistry
Authors: S. Kormali, W. James, J. Poland, and E. Schweikert

Abstract  

The application of charged particle activation analysis to the determination of phosphorus in a variety of sample materials is discussed. The activity produced via the31P(, n)34mCl reaction is quantitated either nondestructively or using postirradiation radiochemical separations depending on the characteristics of the sample matrices. Corrections which are necessary for the determination of phosphorus in pure tantalum metal due to spectral interferences are discussed.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: J. McGinley, G. Stock, E. Schweikert, J. Cross, R. Zeisler, and L. Zikovsky

Abstract  

Heavy ion activation has been studied as a method for determining hydrogen. The reactions used [e.g.1H(7Li, n)7Be] are the “inverse” of well known reactions [e.g.7Li(p, n)7Be]. Nuclear activation parameters for the ion beams of interest (7Li2+,10B2+) have been studied. The analytical feasibility is demonstrated with the determination of hydrogen in titanium at the 100 and 30 ppm levels with relative precisions of 8 to 10%. Detection limits in titanium are in the 0.1 to 0.5 ppm range. Heavy ion bombardment is also accompanied by the emission of characteristic X-rays (“atomic” activation). The parameters governing X-ray emission and background production have been investigated. Experimental K and L X-ray yields from thick targets have been measured for many elements excited by On+ beams of 0.5 to 7 MeV/amu and Kr7+ beams of 0.5 to 1 MeV/amu. The simultaneous determination of trace elements at levels of 10 to several 100 ppm in microsamples (∼10−5 g) is demonstrated on biological specimens. K and L X-ray yields and corresponding detection limits have also been measured with the7Li2+ and10B2+ beams used for the nuclear activation of hydrogen. With these beams (∼6 MeV/amu) simultaneous nuclear and atomic activation is possible, yielding an unusual multielement trace analysis capability covering hydrogen and medium and high Z elements.

Restricted access