Search Results

You are looking at 41 - 50 of 127 items for

  • Author or Editor: L. Wang x
  • All content x
Clear All Modify Search

Summary

A simple and rapid method, using online ultraperformance liquid chromatography with photodiode array detection and electrospray ionization mass spectrometry (UPLC-PDA-eλ-ESI-MS/MS), was developed for the in-depth analysis of 50 batches Radix et Rhizoma Rhei. The analysis was performed on a UPLC BEH C18 column using a gradient elution system. Baseline separation could be achieved in less than 7.5 min. At the same time, on the basis of the 50 batches of samples collected from representative cultivated regions, a novel chromatographic fingerprint was devised by UPLC-PDA, in which 27 common peaks were detected and identified by the developed UPLC-MS/MS method step by step according to fragmentation mechanisms, MS/MS data, standards, and relevant literature. Many active components gave prominent [M - H] ions in the ESI mass spectra. These components include anthraquinones, sennosides, stilbenes, glucose gallates, naphthalenes, and catechins. Furthermore, based on the information of these Radix et Rhizoma Rhei components, and further combined with discriminant analysis, a novel discriminant analysis equation (DAE) was established for the quality control of Radix et Rhizoma Rhei for the first time.

Full access

Thioacetamide (TAA) is a potent hepatotoxicant in acute and chronic hepatic injury. The study examined the protective effect of sesame oil against TAA-induced hepatic injury in rats. Hepatic injury was induced by intraperitoneal injection of 100 mg/kg of TAA for 24 h. Triple doses of sesame oil (1, 2, or 4 mL/kg) was given orally 0, 6, and 12 h after TAA treatment. TAA significantly increased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Sesame oil decreased serum AST and ALT levels and significantly inhibited hepatic lipid peroxidation and nitric oxide levels compared with TAA-alone group. Further, sesame oil significantly inhibited TAA-induced hepatic neutrophil activation marker myeloperoxidase activity. However, sesame oil did not affect hepatic tumor necrosis factor, IL-1β and IL-10 generation in TAA-treated group. In conclusion, sesame oil protects against TAA-induced hepatic injury and oxidative stress via the inhibition of neutrophil activation. However, inflammatory cytokines may not be involved in sesame-oil-associated hepatic protection against TAA in rats.

Restricted access

Abstract  

Synthesis, characterization and thermal analysis of polyaniline (PANI)/ZrO2 composite and PANI was reported in our early work. In this present, the kinetic analysis of decomposition process for these two materials was performed under non-isothermal conditions. The activation energies were calculated through Friedman and Ozawa-Flynn-Wall methods, and the possible kinetic model functions have been estimated through the multiple linear regression method. The results show that the kinetic models for the decomposition process of PANI/ZrO2 composite and PANI are all D3, and the corresponding function is ƒ(α)=1.5(1−α)2/3[1−(1-α)1/3]−1. The correlated kinetic parameters are E a=112.7±9.2 kJ mol−1, lnA=13.9 and E a=81.8±5.6 kJ mol−1, lnA=8.8 for PANI/ZrO2 composite and PANI, respectively.

Restricted access

Abstract  

A brown and transparent ionic liquid (IL), [C4mim][FeCl4], was prepared by mixing anhydrous FeCl3 with 1-butyl-3-methylimidazolium chloride ([C4mim][Cl]), with molar ratio 1/1 under stirring in a glove box filled with dry argon. The molar enthalpies of solution, Δs H m, of [C4mim][FeCl4], in water with various molalities were determined by a solution-reaction isoperibol calorimeter at 298.15 K. Considering the hydrolyzation of anion [FeCl4] in dissolution process of the IL, a new method of determining the standard molar enthalpy of solution, Δs H m 0, was put forward on the bases of Pitzer solution theory of mixed electrolytes. The values of Δs H m 0 and the sum of Pitzer parameters:
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$(4\beta _{Fe,Cl}^{(0)L} + 4\beta _{C_4 mim,Cl}^{(0)L} + \Phi _{Fe,C_4 mim}^L )$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$(\beta _{Fe,Cl}^{(1)L} + \beta _{C_4 mim,Cl}^{(1)L} )$$ \end{document}
were obtained, respectively. In terms of thermodynamic cycle and the lattice energy of IL calculated by Glasser’s lattice energy theory of ILs, the dissociation enthalpy of anion [FeCl4], ΔH dis≈5650 kJ mol−1, for the reaction: [FeCl4](g)→Fe3+(g)+4Cl(g), was estimated. It is shown that large hydration enthalpies of ions have been compensated by large the dissociation enthalpy of [FeCl4] anion, Δd H m, in dissolution process of the IL.
Restricted access

Abstract

Thermal decomposition of N,N′-diphenylguanidine (DPG) was investigated by simultaneous TG/DSC-FTIR techniques under nonisothermal conditions. Online FTIR measurements illustrate that aniline is a major product of DPG decomposition. The observation that the activation energy depends on the extent of conversion indicates that the DPG decomposition kinetics features multiple processes. The initial elimination of aniline from DPG involves two pathways because of the isomerization of DPG. Mass spectrometry and thin film chromatography suggest that there are two major intermediate products with the major one of C21N3H17. The most probable kinetic model deduced through multivariate nonlinear regression method agrees well with the experimental data with a correlation coefficient of 0.9998. The temperature-independent function of conversion f(α), activation energy E and the pre-exponential factor A of DPG decomposition was also established through model-fitting method in this research.

Restricted access
Restricted access

Abstract  

The migration of 99Tc in a weak loess aquifer was investigated in-situ with undisturbed aquifer medium columns. The columns were obtained horizontally at a depth of 3236 m in an Underground Research Facility (URF). Quartz containing 3H (HTO) and 99Tc (in the form of 99TcO4 -) was introduced into one end of the columns and the columns were covered tightly. Aquifer water was introduced into the columns directly from an experimental shaft in the UFR. Effluents from the columns were collected and the activity of 3H and 99Tc were determined with a liquid scintillation analyzer. The breakthrough curves of 3H and 99Tc indicate that 99Tc migrates a little faster than that 3H does in the aquifer.

Restricted access

Hydrated goethite nanorodS

Vibration spectral properties, thermal stability, and their potential application in removing cadmium ions

Journal of Thermal Analysis and Calorimetry
Authors: X. Qiu, L. Lv, G. Li, W. Han, X. Wang, and L. Li

Abstract  

Vibration spectral properties and dehydration behaviors of goethite nanorods with diameters ranging from 13 to 32 nm were investigated using infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. All goethite nanorods were highly hydrated with physisorbed and chemisorbed water. As the diameters of goethite nanorods increased, the hydroxyl deformation vibration in the a-b plane showed a significant blue shift, while the Fe-O vibration in the a-b plane shifted to lower frequencies, indicating an enhancement of O-H bond and the ionicity of Fe-O in a-b plane. The hydrated goethite nanorods are also proved to be useful in environmental remedy because of their excellent removal ability of heavy metal ions.

Restricted access

Summary  

Electronic stopping power of 19F in Ni, Pd and Gd was measured and compared to Mstar and SRIM calculation as well as experimental results published in literature. It turns out that the present electronic stopping power agrees reasonably well with them.

Restricted access

Summary

To control the quality of Euonymus fortunei (Turcz.) Hand.-Mazz., a simple and reliable method of high-performance liquid chromatography (HPLC) coupled with photodiode array detector (PAD) was developed for both fingerprint analysis and quantitative determination. Four representative flavonoids, namely, kaempferol-3-O-β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-7-O-β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranoside (I), kaempferol-3,7-O-α-dirhamnopyranoside (II), apigenin-7-O-β-D-glucopyranoside (III), and kaempferol-3-(4″-O-acetyl)-O-α-L-rhamnopyranoside-7-O-α-L-r hamnopyranoside (IV) isolated from E. fortunei, were used as reference compounds and simultaneously determined by the validated HPLC method. The unique properties of the chromatographic fingerprint were validated by analyzing 11 batches of E. fortunei, E. japonicus, E. laxiflorus, E. myrianthus, and E. hamiltonianus samples. Our results revealed that the chromatographic fingerprint combined with similarity measurement could efficiently identify and distinguish E. fortunei from the other investigated Euonymus species.

Full access