Search Results

You are looking at 41 - 44 of 44 items for

  • Author or Editor: M. Filho x
  • All content x
Clear All Modify Search
Journal of Radioanalytical and Nuclear Chemistry
Authors: S. Moreira, A. E. S. Vives, O. L. A. D. Zucchi, E. F. O. de Jesus, V. F. Nascimento Filho, and S. M. B. Brienza

Summary  

In this study the concentrations of P, S, Cl, K, Ca, Mn, Fe, Zn and Br in twenty-nine brands of national and international beers were determined by synchrotron radiation total reflection X-ray fluorescence analysis (SR-TXRF). The results were compared with the limits established by the Brazilian legislation and the nutritional values established by National Agricultural Library (NAL, USA). The measurements were performed at the X-Ray Fluorescence Beamline at Brazilian National Synchrotron Light Laboratory, in Campinas, São Paulo, Brazil, using a polychromatic beam for excitation. A small volume of 5 ml of beers containing an internal standard used to correct geometry effects was analyzed without pretreatment. The measuring time was 100 seconds and the detection limits obtained varied from 1 mg . l-1 for Mn and Fe to 15 mg . l-1 for P.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: R. A. Candeia, F. S. M. Sinfrônio, T. C. Bicudo, N. Queiroz, A. K. D. Barros Filho, L. E. B. Soledade, I. M. G. Santos, A. L. Souza, and A. G. Souza

Abstract

Biodiesel oxidation is a complex process widely influenced by the chemical composition of the biofuel and storage conditions. Several oxidation products can be formed from these processes, depending on type and amount of the unsaturated fatty acid esters. In this work, fatty acid methyl and ethyl esters were obtained by base-catalyzed transesterification of soybean oil and physicochemically characterized according to standards from ASTM, EN, and ABNT. The thermal and oxidative stabilities of biodiesel samples were investigated during the storage process by pressure differential scanning calorimetry (PDSC) and by viscosity measurements. Absolute viscosities of biodiesels after accelerated aging were also determined. The viscosity increased as the aging temperature and time were raised. The results showed that oxidation induction can occur during storage, decreasing the biodiesel stability. PDSC analysis showed that during storage under climate simulation the values of high-pressure oxidative induction times (HPOIT) were reduced for both FAEE and FAME.

Restricted access
Acta Biologica Hungarica
Authors: L. M. Jesus, P. R. C. Abreu, Marcela C. Almeida, Lavínia C. Brito, Sheila F. Soares, D. E. De Souza, Luciana C. Bernardo, A. S. Fonseca, and M. Bernardo-Filho

Since ancient times propolis has been employed for many human purposes because to their favourable properties. Blood constituents labeled with technetium-99m (99mTc) have been used in nuclear medicine procedures. Some authors have reported that synthetic or natural drugs can interfere with the labeling of blood constituents with 99mTc. The aim of this work was to evaluate the action of a propolis extract on the labeling of blood elements with 99mTc. Samples of whole blood of male Wistar rats were incubated in sequence with an aqueous propolis extract at different concentrations, stannous chloride and 99mTc, as sodium pertechnetate. Blood samples were centrifuged to separate plasma and blood cells, soluble and insoluble fractions of plasma and blood cells were also separated after precipitation in trichloroacetic acid solution and centrifugation. The radioactivity was counted and the percentage of incorporated radioactivity (%ATI) for each fraction was calculated. The data obtained showed that the aqueous propolis extract used decreased significantly the %ATI in plasma proteins at higher concentration studied. Results suggest that at high concentration the constituents of this extract could alter the labeling of plasma proteins competing with same binding sites of the 99mTc on the plasma proteins or acting as antioxidant compounds.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Rafael Leite de Oliveira, Hernane da Silva Barud, Rosana M. N. de Assunção, Carla da Silva Meireles, Geandre Oliveira Carvalho, Guimes Rodrigues Filho, Younes Messaddeq, and Sidney José Lima Ribeiro

Abstract

In this study, microcrystalline cellulose (MCC) was prepared from the acid hydrolysis of bacterial cellulose (BC) produced in culture medium of static Acetobacter xylinum. The MCC-BC produced an average particle size between 70 and 90 μm and a degree of polymerization (DP) of 250. The characterization of samples was performed by thermogravimetric analysis, X-ray diffraction, and scanning electron microscopy (SEM). The MCC shows a lower thermal stability than the pristine cellulose, which was expected due to the decrease in the DP during the hydrolysis process. In addition, from X-ray diffractograms, we observed a change in the crystalline structure. The images of SEM for the BC and MCC show clear differences with modifications of BC fiber structure and production of particles with characteristics similar to commercial MCC.

Restricted access