Search Results

You are looking at 41 - 50 of 87 items for

  • Author or Editor: X. Chen x
  • All content x
Clear All Modify Search

The common wheat line, YW243, developed in our research group, was tested for the resistances of barley yellow dwarf virus (BYDV), powdery mildew (Pm) and stripe rust in field, and was analyzed by molecular markers for convenient trace of the resistant genes in breeding. Genomic in situ hybridization (GISH) analysis and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) assay further demonstrated that YW243 was a homozygous multiple translocation line of Triticum aestivum, Thinopyrum intermedium and Secale cereale (T7DS·7DL-7XL & 1BL·1RS). The disease resistance test and marker analysis showed that YW243 carried seven resistance genes to the three diseases, including Bdv2 to BYDV on 7DL-7XL, Pm4 to powdery mildew on 2AL, Yr2, Yr9, Sr 31 and Lr26 and a new Yr to stripe rust on 7B, 1BL, 1RS and 2BL. Restriction fragment length polymorphism (RFLP) markers Xpsr687 and Xwg380 , sequence tagged site (STS) marker STS 1700 , simple sequence repeat (SSR) markers Xgwmc364 and Xgwm582 , SSR markers Xgwm388 and Xgwm501 can be used as diagnostic tools to track Bdv2, Pm4, Yr2, Yr9 and Yr in YW243 , respectively; and two amplified fragment length polymorphism (AFLP) markers M54E63 - 700 and M54E64 - 699 can also be used to select Yr in YW243 .

Restricted access

Summary

A simple and rapid HPLC method using a photodiode array (PDA) detector for the analysis of 3-hydroxycarboplatin and its related complex has been established for the first time. Separation of 3-hydroxycarboplatin and 3-hydroxy-1,1-cyclobutanedicarboxylic acid (3-HO-cbdca) was carried out on a Phenomenex ODS3 column using an aqueous solution containing 50 mM ammonium acetate and 5 mM sodium 1-octanesulfonate as the mobile phase. The flow rate was 0.8 mL min−1, the column temperature was 40°C, and the detection wavelength was 230 nm for 3-hydroxycarboplatin and 220 nm for 3-HO-cbdca. Different analytical performance parameters such as precision, accuracy, linearity, stability of the solution, specificity, limit of detection (LOD), limit of quantification (LOQ), and system suitability were determined using the Empower 2 software. The calibration curve of standard 3-hydroxycarboplatin showed good linearity (r = 0.9995) within the range 0.5–1.4 mg mL−1. The method was accurate and precise, with an average accuracy of 100.4% (RSD = 1.53%, n = 9), and the results of the system suitability test showed symmetrical peaks, good resolution (R s), and repeatability. It can be applied to the quality control of 3-hydroxycarboplatin.

Full access
Journal of Radioanalytical and Nuclear Chemistry
Authors: D. Xu, Q. L. Ning, X. Zhou, C. L. Chen, X. L. Tan, A. D. Wu, and X. Wang

Summary  

Effects of ionic strength and of fulvic acid on the sorption of Eu(III) on alumina were investigated by using a batch technique. The experiments were carried out at T=25±1 °C, pH 4-6 and in the presence of 1M NaCl. The results indicate that sorption isotherms of Eu(III) are linear at low pH values. The sorption-desorption of Eu(III) on alumina at pH 4.4 is reversible, but a sorption-desorption hysteresis is found at pH 5.0. Fulvic acid has an obvious positive effect on the sorption of Eu(III) on alumina at low pH values. The migration of Eu(III) in alumina was studied by using column experiments and 152+154Eu(III) radiotracer at pH 3.8. For column experiments, Eu(III) sorbed on alumina can be desorbed completely from the solid surface at low pH values. The findings are relevant to the evaluation of lanthanide and actinide ions in the environment.

Restricted access

Abstract  

Humic substances have attracted great interest in the investigation of metal ion behavior in the environment because of their special properties. Sorption and complexation of Pb2+ on MX-80 bentonite, LA bentonite, alumina and silica as a function of pH were studied in the presence and absence of fulvic acid (FA). The experiments were carried out in 0.01M and 0.001M NaNO3 solutions under ambient conditions. The results indicate that sorption of Pb2+ on the solid samples is strongly dependent on pH and FA. The sorption of Pb2+ is not influenced drastically by ionic strength. The nature of minerals/oxides, nature of humic substances and the composition of the solution are important factors in the behavior of metal ions in the environment. The results also indicate that FA has a positive effect on Pb2+ sorption at low and a negative effect at high pH values, and the results are discussed in the comparative complexation between FA-Pb2+ and Pb2+-minerals.

Restricted access

Two hundred and ninety F9 recombinant inbred lines (RILs) derived from the bread wheat cultivar Gaocheng 8901 and the waxy wheat cultivar Nuomai 1 were used in determining the high-molecular-weight glutenin subunit (HMW-GS) and waxy protein subunit combinations and their effects on the dough quality and texture profile analysis (TPA) of cooked Chinese noodles. Seven alleles were detected at Glu-1 loci. There were two alleles found at each of the Wx-A1, Wx-B1 and Wx-D1 loci. Eight allelic combinations were observed for HMW-GS, LMW-GS and waxy proteins, respectively. Both the 1/7+8/5+10 and 1/7+8/5+12 combinations contributed to dough elasticity, and the 1/7+8/5+10 combination also provided better TPA characteristics. Compared to Wx protein, HMW-GS was more important on dough alveogram properties. LMW-GS significantly affected springiness and cohesiveness; HMW-GS mainly affected the hardness; Wx×LMW-GS significantly affected the springiness, cohesiveness and chewiness; HMW-GS×Wx×LMW-GS mainly influenced the springiness and chewiness. But HMW-GS×LMW-GS only affected the spinginess. These indicated the TPA of noodles was significantly affected by the interactions between glutenin and Wx proteins.

Restricted access

Abstract  

Sorption of Th(IV) on Na-rectorite as a function of pH, ionic strength, soil humic acid (HA) and fulvic acid (FA) are studied under ambient conditions by using a batch technique. The results indicate that the sorption of Th(IV) on Na-rectorite is not only dependent on medium pH values, but also dependent on medium ionic strength and humic substances. Surface complexation and cation competition exchange account for Th(IV) sorption on Na-rectorite. The sorption of Th(IV) on Na-rectorite decreases with the increase on the concentration of NaNO3, Mg(NO3)2 and Ca(NO3)2, and increases with the increasing amount of HA/FA in the suspension/adsorbed on rectorite. Soil HA/FA enhances the sorption of Th(IV) on rectorite at medium pH<4 drastically, but the presence of FA reduces the sorption of Th(IV) at medium pH>6, and HA has no effect on Th(IV) sorption at medium pH>6. An interpretation for the results is attempted, considering the occurrence of different sorption mechanisms.

Restricted access

Separation and analysis of water-soluble proteins (WSP) are important in understanding wheat grain proteome fundamentals. However, due to their high degree of heterogeneity and complexity in the compositions, separating WSP is generally difficult and relevant methodologies are not efficiently developed yet. Capillary electrophoresis (CE) is one of the analytical methods currently used for protein separation and characterization. In the present study, a CE method is established for rapidly separating and characterizing WSP of wheat grains. The established method was tested in various applications including wheat variety and germplasm identification as well as protein synthesis and accumulation studies during different grain development stages subject to genotypic and environmental variations. As results, the characteristic CE patterns of a range of bread wheat cultivars and related species were readily identified. The synthesis and accumulation patterns of wheat WSP during developing grains as well as their stabilities in different environments were also investigated. The technical advancements present in this article appear to be useful for wheat cultivar and germplasm identification as well as genetics and breeding research.

Restricted access

This study aimed to clarify the genetic mechanisms behind wheat flour color. Flour colorrelated traits (L*, a*, and b*) and polyphenol oxidase (PPO) activity are important parameters that influence the end-use quality of wheat. Dissecting the genetic bases and exploring important chromosomal loci of these traits are extremely important for improving wheat quality. The diverse panel of 205 elite wheat varieties (lines) was genotyped using a highdensity Illumina iSelect 90K single-nucleotide polymorphisms (SNPs) assay to disclose the genetic mechanism of flour color-related traits and PPO activity. In 2 different environments and their mean values (MV), 28, 30, 24, and 12 marker-trait associations (MTAs) were identified for L*, a*, b* traits, and PPO activity, respectively. A single locus could explain from 5.52% to 20.01% of the phenotypic variation for all analyzed traits. Among them, 5 highly significant SNPs (P ≤ 0.0001), 11 stable SNPs (detected in all environments) and 25 multitrait MTAs were identified. Especially, BS00000020_51 showed pleiotropic effects on L*, a*, and b*, and was detected in all environments with the highest phenotypic contribution rates. Furthermore, this SNP was also found to be co-associated with wheat grain hardness, ash content, and pasting temperature of starch in previous studies. The identification of these significantly associated SNPs is helpful in revealing the genetic mechanisms of wheat colorrelated traits, and also provides a reference for follow-up molecular marker-assisted selection in wheat breeding.

Restricted access

Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Eriks., is a major disease that causes substantial losses to wheat production worldwide. The utilization of effective resistance genes in wheat cultivars is the preferred control of the disease. To study the inheritance of all-stage resistance in spring wheat cultivars Louise, WA008016, Express, Solano, Alturas and Zak from the Pacific Northwest (PNW) of the United States, the six cultivars were crossed with the Chinese susceptible variety Taichung 29. Single-spore isolates of CYR32 and CYR33, the predominant Chinese races of P. striiformis f. sp. tritici, were used to evaluate F1, F2 and BC1 generations for stripe rust resistance under controlled greenhouse conditions. Genetic analysis determined that Louise had one dominant resistance gene to CYR32, temporarily designated as YrLou. WA008016 had two dominant and one recessive resistance genes to CYR32, temporarily designated as YrWA1, YrWA2 and YrWA3, respectively. Express had a single recessive gene that conferred resistance to CYR32, temporarily designated as YrExp3. The two independent dominant genes in Solano conferring resistance to CYR32 were temporarily designated as YrSol1 and YrSol2. Alturas had two recessive genes for resistance to CYR32, temporarily designated as YrAlt1 and YrAlt2. Zak has one dominant gene for resistance to CYR33, temporarily designated as YrZak1. These six cultivars can be important resistance sources in Chinese wheat stripe rust resistance breeding.

Restricted access