Search Results

You are looking at 41 - 50 of 70 items for

  • Author or Editor: Y.X. Liu x
  • All content x
Clear All Modify Search

Summary

10-O-(N,N-dimethylaminoethyl)-ginkgolide B (XQ-1) is an intermediate for synthesizing 10-O-(N,N-dimethylaminoethyl)-ginkgolide B methanesulfonate (XQ-1H), which is a novel ginkgolide B derivative and is being developed as a platelet-activating factor antagonist. A specific and rapid liquid chromatographic method was developed for the quantitative analysis of XQ-1 and its three related impurities, which were 10-O-(N,N-dimethylaminoethyl)-11,12-seco-ginkgolide B (imp-1), 10-O-(N,N-dimethylaminoethyl)-11,12-seco-3,14-dehydroginkgolide B (imp-2) and 10-O-(N,N-dimethylaminoethyl)-3,14-dehydroginkgolide B (imp-3) simultaneously in XQ-1 samples. Chromatographic separation was achieved on a CN band stationary phase, with the mobile phase consisting of methanol and 20 mM dipotassium hydrogen phosphate (pH 7.5) (50:50, υ/υ) in isocratic elution. The flow rate was 1.0 mL min−1 and detector was set at 220 nm. The method was optimized by the analysis of the samples generated during the forced degradation studies. The XQ-1, imp-1, imp-2, and imp-3 were completely separated within 15 min. The resolutions (R s) amongst four target compounds were >2. The developed method was validated with respect to specificity, linearity, accuracy, precision, and robustness. The results indicated that the simultaneous LC determination method was readily utilized as a quality control method for XQ-1 sample.

Full access

Summary

A preparative high-speed countercurrent chromatograph (HSCCC) method for the isolation and purification of C6-C2 natural alcohol and benzyl ethanol from Forsythia suspensa was successfully established. Cornoside, forsythenside F, forsythiaside, and acteoside were rapidly obtained for the first time by HSCCC with a two-phase solvent system ethyl acetate-n-butanol-methanol-water (5:1:0.5:5, υ/υ) in one-step separation. The purities of them were all above 97% as determined by high-performance liquid chromatography, and the combination of ESI-MS and NMR analysis confirmed the chemical structures of the four compounds.

Full access

Abiotic stresses like salinity and abnormally cold environments cause significant yield losses in many crops including wheat. Therefore, concerted efforts are being made by breeders to develop new varieties with salt and cold tolerance to ensure stable yields over varied environments. This study was undertaken to screen six hundred and seventy-seven accessions of international wheat genetic resources to identify lines with high level of tolerance to salinity and cold environments. Based on the results of two years study in different agroecological locations, 51 accessions were classified as salt tolerant and 115 accessions were classified as cold tolerant. Of these, 35 accessions had good agronomic characteristics. Also, there were 39 genotypes with combined tolerance to cold as well as salinity. Thus, there were good lines which can be used directly or as parents for breeding wheat varieties for wide adaptation and high yield. Further analysis of the data showed that early genotypes had good cold tolerance but a poor salt tolerance. It was also observed that small number of both test spikelet and spikelet, short spike length and good seed-plump were positively associated with cold tolerance. Therefore, maturity and spike traits should be taken into considered when selecting wheat lines for wide adaptation breeding.

Restricted access

Abstract

Thermal decomposition kinetics of magnesite were investigated using non-isothermal TG-DSC technique at heating rate (β) of 15, 20, 25, 35, and 40 K min−1. The method combined Friedman equation and Kissinger equation was applied to calculate the E and lgA values. A new multiple rate iso-temperature method was used to determine the magnesite thermal decomposition mechanism function, based on the assumption of a series of mechanism functions. The mechanism corresponding to this value of F(a), which with high correlation coefficient (r-squared value) of linear regression analysis and the slope was equal to −1.000, was selected. And the Malek method was also used to further study the magnesite decomposition kinetics. The research results showed that the decomposition of magnesite was controlled by three-dimension diffusion; mechanism function was the anti-Jander equation, the apparent activation energy (E), and the pre-exponential term (A) were 156.12 kJ mol−1 and 105.61 s−1, respectively. The kinetic equation was
ea
and the calculated results were in accordance with the experiment.
Restricted access

Abstract  

A new model has been deduced by assumed autocatalytic reactions. It includes two rate constants, k 1 and k 2, two reaction orders, m and n, and the initial concentration of [OH]. The model proposed has been applied to the curing reaction of a system of bisphenol-S epoxy resin (BPSER), with4,4'-diaminodiphenylmethane (DDM) as a curing agent. The curing reactions were studied by means of differential scanning calorimetry (DSC). Analysis of DSC data indicated that an autocatalytic behavior showed in the curing reaction. The new model was found to fit to the experimental data exactly. Rate constants, k 1 and k 2 were observed to be greater when curing temperature increased. The activation energies for k 1 and k 2 were 95.28 and 39.69 kJ mol–1, respectively. Diffusion control was incorporated to describe the cure in the latter stages.

Restricted access

Abstract  

As one 3-D coordination polymer, lead formate was synthesized; calorimetric study and thermal analysis for this compound were performed. The low-temperature heat capacity of lead formate was measured by a precise automated adiabatic calorimeter over the temperature range from 80 to 380 K. No thermal anomaly or phase transition was observed in this temperature range. A four-step sequential thermal decomposition mechanism for the lead formate was found through the DSC and TG-DTG techniques at the temperature range from 500 to 635 K.

Restricted access

Abstract  

The power vs. time curves of the promoter bacteria of a nutrient drug were determined by using a 2277 Thermal Activity Monitor (Sweden). A new experimental model of bacterial growth were established. The growth rate constant, heat output and optimum concentration of specific promoter bacterial of nutrient drug were calculated.

Restricted access

Thinopyrum ponticum (2n = 10x = 70) has donated rust resistance genes to protect wheat from this fungal disease. In the present study, the line ES-7, derived from the progeny of the crosses between common wheat cultivar Abbondanza and Triticum aestivumTh. ponticum partial amphiploid line Xiaoyan784, was characterized by cytological, fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and EST-STS marker techniques. Cytological observations revealed that the configuration of ES-7 was 2n = 42 = 21 II. GISH and FISH results showed that ES-7 had two St chromosomes and lacked 5A chromosomes compared to common wheat. The 4A chromosome of ES-7 had small alterations from common wheat. Two EST-SSR markers BE482522 and BG262826, specific to Th. ponticum and tetraploid Pseudoroegneria spicata (2n = 4x = 28), locate on the homoeologous group 5 chromosomes of wheat, could amplify polymorphic bands in ES-7. It was suggested that the introduced St chromosomes belonged to homoeologous group 5, that is, ES-7 was a 5St (5A) disomic substitution line. Furthermore, ES-7 showed highly resistance to mixed stripe rust races of CYR32 and CYR33 in adult stages, which was possibly inherited from Th. ponticum. Thus, ES-7 can be used for wheat stripe rust resistance breeding program.

Restricted access

Gibberellins (GAs) are a class of plant hormones that play important roles in diverse aspects during plant growth and development. A series of GA synthesis and metabolism genes have been reported or proved to have essential functions in different plant species, while a small number of GA 2-oxidase genes have been cloned or reported in wheat. Previous studies have provided some important findings on the process of GA biosynthesis and the enzymes involved in its related pathways. These may facilitate understanding of the complicated process underlying GA synthesis and metabolism in wheat. In this study, GA 2-oxidase genes TaGA2ox1-1, TaGA2ox1-2, TaGA2ox1-3, TaGA2ox1-4, TaGA2ox1-5, and TaGA2ox1-6 were identified and further overexpressed in rice plants to investigate their functions in GA biosynthesis and signaling pathway. Results showed overexpression of GA 2-oxidase genes in rice disrupted the GA metabolic pathways and induced catalytic responses and regulated other GA biosynthesis and signaling pathway genes, which further leading to GA signaling disorders and diversity in phenotypic changes in rice plants.

Restricted access

Summary

A selective and sensitive liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method was developed and validated for analysis of xanthotoxol (1), xanthotoxin (2), isoimpinellin (3), bergapten (4), oxypeucedanin (5), imperatorin (6), cnidilin (7), and isoimperatorin (8) in rat bile and urine using pimpinellin as an internal standard (IS). An Agilent 1200 liquid chromatography system (Agilent Technologies, USA) equipped with a quaternary pump, an autosampler, and a column compartment was used for all analyses. Chromatographic separations were performed on a Sapphire C18 column (150 mm × 4.6 mm, 5 μm), and the column temperature was maintained at 30°C; the sample injection volume was 10 μL. The specificity, linearity, accuracy, precision, recovery, matrix effect, and several stabilities were validated for all analytes in the rat bile and urine samples. The method was successfully applied in monitoring the concentrations of eight coumarins in rat bile and urine after a single oral administration of Radix Angelicae Dahuricae extract with a dosage of 8.0 mL/kg. In the bile samples, the eight coumarins excreted completely in twenty-four hours. The average percentages of coumarins (1–8) excreted were 0.045%, 0.019%, 0.177%, 0.105%, 0.337%, 0.023%, 0.024%, 0.021%. In the urine samples, the eight coumarins excreted completely in seventy-two hours. The average percentages of coumarins (1–8) excreted were 1.78%, 0.095%, 0.130%, 0.292%, 0.082%, 0.008%, 0.005%, 0.004%. The method is robust and specific and it can successfully complete the requirements of the excretion study of the eight coumarins in Radix Angelicae Dahuricae.

Full access