Search Results

You are looking at 41 - 50 of 56 items for

  • Author or Editor: Z. L. Li x
  • All content x
Clear All Modify Search

Uniformity in the height of main stem and tillers is a key factor affecting ideal plant type, a key component in super high-yielding rice breeding. An understanding of the genetic basis of the panicle layer uniformity may thus contribute to breeding varieties with good plant type and high yield. In the present study, a doubled haploid (DH) population, derived from a cross between indica rice variety Zhai-Ye-Qing 8 (ZYQ8) and japonica rice variety Jing-Xi 17 (JX17) was used to analyze quantitative trait loci (QTL) for panicle layer uniformity related traits. Six, four and three QTL were detected for the highest panicle height (HPH), lowest panicle height (LPH) and panicle layer dis-uniformity (PLD), respectively. qHPH-1-1 and qPLD-1 were located at the same interval on chromosome 1. The JX17 allele(s) of these QTL increased HPH and PLD by 2.57 and 1.26 cm, respectively. Similarly, qPLD-7 and qHPH-7 were located at the same interval on chromosome 7, where the ZYQ8 allele(s) increased HPH and PLD by 3.74 and 1.96 cm, respectively. These four QTL were unfavourable for panicle layer uniformity improvement because a decrease of the PLD was accompanied by decrease of the plant height. qPLD-6 and qLPH-6-1 were located at the same interval on chromosome 6, however here the JX17 allele(s) increased LPH, but decreased PLD, suggesting that this QTL was favourable for improvement of panicle layer uniformity. The markers identified in this study are potential for marker assisted breeding for the improvement of the panicle layer uniformity and ideal plant type.

Restricted access

Abstract  

Effects of fullerenes including FS, EFS and pure C60 on thermal behaviors of polyethylene glycol (PEG) have been studied by employing thermogravimetry-differential thermogravimetry (TG-DTG), differential scanning calorimeter (DSC) and off-line furnace-type pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The products were collected by Cambridge filter pad which was widely used in analyzing the combustion products of cigarette. The results showed that the addition of fullerenes obviously restrained the thermal decomposition of PEG. The initial decomposition temperatures (IDT) and maximum decomposition peak temperatures (MDT) were evidently postponed by the addition of fullerenes. Pyrolysis products with one or two hydroxyl end groups obviously increased with the addition of 10% C60. The reasons of the changes were discussed from the aspects of reaction mechanisms.

Restricted access

Gibberellins (GAs) are a class of plant hormones that play important roles in diverse aspects during plant growth and development. A series of GA synthesis and metabolism genes have been reported or proved to have essential functions in different plant species, while a small number of GA 2-oxidase genes have been cloned or reported in wheat. Previous studies have provided some important findings on the process of GA biosynthesis and the enzymes involved in its related pathways. These may facilitate understanding of the complicated process underlying GA synthesis and metabolism in wheat. In this study, GA 2-oxidase genes TaGA2ox1-1, TaGA2ox1-2, TaGA2ox1-3, TaGA2ox1-4, TaGA2ox1-5, and TaGA2ox1-6 were identified and further overexpressed in rice plants to investigate their functions in GA biosynthesis and signaling pathway. Results showed overexpression of GA 2-oxidase genes in rice disrupted the GA metabolic pathways and induced catalytic responses and regulated other GA biosynthesis and signaling pathway genes, which further leading to GA signaling disorders and diversity in phenotypic changes in rice plants.

Restricted access

Abstract  

The migration of 99Tc in a weak loess aquifer was investigated in-situ with undisturbed aquifer medium columns. The columns were obtained horizontally at a depth of 3236 m in an Underground Research Facility (URF). Quartz containing 3H (HTO) and 99Tc (in the form of 99TcO4 -) was introduced into one end of the columns and the columns were covered tightly. Aquifer water was introduced into the columns directly from an experimental shaft in the UFR. Effluents from the columns were collected and the activity of 3H and 99Tc were determined with a liquid scintillation analyzer. The breakthrough curves of 3H and 99Tc indicate that 99Tc migrates a little faster than that 3H does in the aquifer.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: L. Yang, Li Sun, Fen Xu, J. Zhang, J. Zhao, Z. Zhao, C. Song, R. Wu, and Riko Ozao

Abstract  

The microcalorimetric method has been used to study the effects of cefpiramide and ceftizoxime sodium on the E. coli growth. The results revealed that these two cephalosporins may alter the metabolic way of the E. coli. Moreover, the lethal doses of cefpiramide and ceftizoxime sodium are 2.000 and 0.2000 μg mL−1, respectively. Combining with the relationships between growth rate constant (k), the maximum power output (P m), the time corresponding to the maximum power output (t m) and cephalosporins concentration (C), one can draw the conclusion that the ceftizoxime sodium has a stronger inhibition effects on the growth of E. coli than that of cefpiramide and they both have the possibility to induce the drug fever.

Restricted access

Abstract  

In terms of pre-safety assessment of a potential site for high-level radioactive wastes disposal in China, the geochemical behavior of key radionuclides which tend to be released from the repository must be thoroughly investigated. 99Tc is a long-lived fission product with appreciable productivity in nuclear fuel, and Tc (+7) has unlimited solubility in near-field geochemical environments. In this study, the effects of ionic strength and humic acid on 99TcO4 sorption and diffusion in Beishan granite were investigated with through-diffusion and batch sorption experiments. Results indicated that the effective diffusion coefficients (D e) of 99TcO4 in Beishan granite varied from 1.07 × 10−12 to 1.28 × 10−12 m2/s without change with ionic strength, while the distribution coefficients (K d) negatively correlated with ionic strength of the rock/water system. This study also indicates that there is no evident influence of humic acid concentration on the diffusion behavior of 99TcO4 in Beishan granite, due to the limited interaction between humic acid and 99TcO4 .

Restricted access

Abstract  

The constant-volume combustion energies of the lead salts of 2-hydroxy-3,5-dinitropyridine (2HDNPPb) and 4-hydroxy-3,5-dinitropyridine (4HDNPPb), ΔU c (2HDNPPb(s) and 4HDNPP(s)), were determined as –4441.922.43 and –4515.741.92 kJ mol–1 , respectively, at 298.15 K. Their standard enthalpies of combustion, Δc m H θ(2HDNPPb(s) and 4HDNPPb(s), 298.15 K), and standard enthalpies of formation, Δr m H θ(2HDNPPb(s) and 4HDNPPb(s), 298.15 K) were as –4425.812.43, –4499.631.92 kJ mol–1 and –870.432.76, –796.652.32 kJ mol–1 , respectively. As two combustion catalysts, 2HDNPPb and 4HDNPPb can enhance the burning rate and reduce the pressure exponent of RDX–CMDB propellant.

Restricted access

Abstract  

The thermal mechanical properties and degradation behaviors were studied on fibers prepared from two high-performance, heterocyclic polymers, poly(p-phenylenebenzobisthiazole) (PBZT) and poly(p-phenylenebenzobisoxazole) (PBZO). Our research demonstrated that these two fibers exhibited excellent mechanical properties and outstanding thermal and thermo-oxidative stability. Their long-term mechanical tensile performance at high temperatures was found to be critically associated with the stability of the C—O or C—S linkage at the heterocyclic rings on these polymers' backbones. PBZO fibers with the C—O linkages displayed substantially higher thermal stability compared to PBZT containing C—S linkages. High resolution pyrolysis-gas chromatography/mass spectrometry provided the information of the pyrolyzates' compositions and distributions as well as their relationships with the structures of PBZT and PBZO. Based on the analysis of the compositions and distributions of all pyrolyzates at different temperatures, it was found that the thermal degradation mechanisms for both of these heterocyclic polymers were identical. Kevlar®-49 fibers were also studied under the same experimental conditions in order to make a comparison of thermo-oxidative stability and long-term mechanical performance at high temperatures with PBZO and PBZT fibers. The data of two high-performance aromatic polyimide fibers were also included as references.

Restricted access

Waxy wheat (Triticum aestivum L.) is grown throughout the world for its specific quality. Fertilization and planting density are two crucial factors that affect waxy wheat yield and photosynthetic capacity. The objectives of the research were to determine the effects of fertilization and planting density on photosynthetic characteristics, yield, and yield components of waxy wheat, including Yield, SSR, TGW, GNPP, GWPP, PH, HI, Pn, Gs, Ci, E and WUE using the method of field experiment, in which there were three levels (150, 300, and 450 kg ha−1) of fertilizer application rate and three levels (1.35, 1.8, and 2.25 × 106 plants ha−1) of planting density. The results suggested that photosynthetic characteristics, yield, and yield components had close relationship with fertilization levels and planting density. Under the same plant density, with the increase of fertilization, Yield, SSR, TGW, GNPP, GWPP, HI, Pn, Gs, E and WUE increased and then decreased, PH increased, but Ci decreased. Under the same fertilization, with the increase of plant density, Yield, SSR, TGW, GNPP, GWPP, HI increased and then decreased, PH, Pn, Gs and E increased, PH and WUE declined. The results also showed that F2 (300 kg ha−1) and D2 (1.8 × 106 plants ha−1) was a better match in this experiment, which could obtain a higher grain yield 4961.61 kg ha−1. Consequently, this combination of fertilizer application rate and plant densities are useful to get high yield of waxy wheat.

Restricted access

A new, sensitive, and selective high-performance liquid chromatography-tandem mass spectrometric method (HPLC-MS/MS) has been developed for the quantification of six flavonoids (sophoricoside, genistin, genistein, rutin, quercetin, and kaempferol) in rat bile and urine. The sample pretreatment was simple by liquid-liquid extraction. Sulfamethalazole was used as internal standard (IS). During method development, the effect of extraction volume, mobile phase composition, column temperature, and injection volume were varied to optimize sensitivity and achieve a run time as short as possible. Chromatographic separation was accomplished on a C18 column with a simple linear gradient elution within 9 min. Full validation of the assay was in accordance with the requirement of the validation of the method in vivo and implemented including specificity, linearity, accuracy, precision, recovery, and matrix effect. This is the first report on determination of the major flavones in rat bile and urine after oral administration of Fructus Sophorae extract. The method has been used successfully in excretion studies of six major flavonoids in rat bile and urine.

Open access