Search Results

You are looking at 51 - 60 of 74 items for

  • Author or Editor: W. Liu x
  • All content x
Clear All Modify Search

The forward and reverse cDNA subtractive libraries before and after the toxic effect of α-amanitin were constructed by suppression subtractive hybridization and randomly selected clones from each subtractive library were screened by PCR and dot blot hybridization. A total of 85 genes with altered expression were finally identified, with 41 genes from the forward library and 44 from the reverse library. Subsequently, the antagonistic effects of candidate traditional Chinese medicines were evaluated based on the genetic transcription levels of the genes with significant altered expression, including Catnβ, Flt3-L, IL-7r and Rpo2-4. The results indicated that Silybum marianum (L.) Gaert and Ganoderma lucidum had significant down-regulated effects on the transcription level of Catnβ that was up-regulated by α-amanitin, and the two herbs also up-regulated the transcription levels of Flt3-L and Rpo2-4. Silybum marianum (L.) had significant up-regulated effects on the IL-7r that was down-regulated by α-amanitin. These preliminary studies suggested that Silybum marianum (L.) and Ganoderma lucidum were effective antagonists against the toxicity of α-amanitin.

Restricted access

Nitrogen (N) is an important nutrient for plant growth and yield production, and rice grown in paddy soil mainly uses ammonium (NH4 +) as its N source. Previous studies have shown that N status is tightly connected to plant defense; however, the roles of NH4 + uptake and assimilation in rice sheath blight disease response have not been studied previously. Here, we analyzed the effects of different N sources on plant defense against Rhizoctonia solani. The results indicated that rice plants grown in N-free conditions had higher resistance to sheath blight than those grown under N conditions. In greater detail, rice plants cultured with glutamine as the sole N source were more susceptible to sheath blight disease compared to the groups using NH4 + and nitrate (NO3 ) as sole N sources. N deficiency severely inhibited plant growth; therefore, ammonium transporter 1;2 overexpressors (AMT1;2 OXs) were generated to test their growth and defense ability under low N conditions. AMT1;2 OXs increased N use efficiency and exhibited less susceptible symptoms to R. solani and highly induced the expression of PBZ1 compared to the wild-type controls upon infection of R. solani. Furthermore, the glutamine synthetase 1;1 (GS1;1) mutant (gs1;1) was more susceptible to R. solani infection than the wild-type control, and the genetic combination of AMT1;2 OX and gs1;1 revealed that AMT1;2 OX was less susceptible to R. solani and required GS1;1 activity. In addition, cellular NH4 + content was higher in AMT1;2 OX and gs1;1 plants, indicating that NH4 + was not directly controlling plant defense. In conclusion, the present study showed that the activation of NH4 + uptake and assimilation were required for rice resistance against sheath blight disease.

Restricted access

Higher plant population and nitrogen management is an adopted approach for improving crop productivity from limited land resources. Moreover, higher plant density and nitrogen regimes may increase the risk of stalk lodging, which is a consequence of complex interplant competition of individual organs. Here, we aimed to investigate the dynamic change in morphology, chemical compositions and lignin promoting enzymes of the second basal inter-nodes altering lodging risk controlled by planting density and nitrogen levels. A field trial was conducted at the Mengcheng research station (33°9′44″N, 116°32′56″E), Huaibei plain, Anhui province, China. A randomized complete block design was adopted, in which four plant densities, i.e., 180, 240, 300, and 360 × 104 ha−1 and four N levels, i.e., 0, 180, 240, and 300 kg ha−1 were studied. The two popular wheat varieties AnNong0711 and YanNong19 were cultivated. Results revealed that the culm lodging resistance (CLRI) index of the second basal internodes was positively and significantly correlated with light interception, lignin and cellulose content. The lignin and cellulose contents were significantly and positive correlated to light interception. The increased planting density and nitrogen levels declined the lignin and its related enzymes activities. The variety AnNong0711 showed more resistive response to lodging compared to YanNong19. Overall our study found that increased planting densities and nitrogen regimes resulted in poor physical strength and enzymatic activity which enhanced lodging risk in wheat varieties. The current study demonstrated that stem bending strength of the basal internode was significantly positive correlated to grains per spike. The thousand grain weight and grain yield had a positive and significant relationship with stem bending strength of the basal internode. The results suggested that the variety YanNong19 produces higher grain yield (9298 kg ha−1) at density 240 × 104 plants ha−1, and 180 kg ha−1 nitrogen, while AnNong0711 produced higher grain yield (10178.86 kg ha−1) at density 240 × 104 plants ha−1 and with 240 kg ha−1 nitrogen. Moreover, this combination of nitrogen and planting density enhanced the grain yield with better lodging resistance.

Restricted access

Thinopyrum ponticum (2n = 10x = 70) has donated rust resistance genes to protect wheat from this fungal disease. In the present study, the line ES-7, derived from the progeny of the crosses between common wheat cultivar Abbondanza and Triticum aestivumTh. ponticum partial amphiploid line Xiaoyan784, was characterized by cytological, fluorescence in situ hybridization (FISH), genomic in situ hybridization (GISH) and EST-STS marker techniques. Cytological observations revealed that the configuration of ES-7 was 2n = 42 = 21 II. GISH and FISH results showed that ES-7 had two St chromosomes and lacked 5A chromosomes compared to common wheat. The 4A chromosome of ES-7 had small alterations from common wheat. Two EST-SSR markers BE482522 and BG262826, specific to Th. ponticum and tetraploid Pseudoroegneria spicata (2n = 4x = 28), locate on the homoeologous group 5 chromosomes of wheat, could amplify polymorphic bands in ES-7. It was suggested that the introduced St chromosomes belonged to homoeologous group 5, that is, ES-7 was a 5St (5A) disomic substitution line. Furthermore, ES-7 showed highly resistance to mixed stripe rust races of CYR32 and CYR33 in adult stages, which was possibly inherited from Th. ponticum. Thus, ES-7 can be used for wheat stripe rust resistance breeding program.

Restricted access

The aphid Sitobion avenae F. is one of the most harmful pests of wheat growth in the world. A primary field screening test was carried out to evaluate the S. avenae resistance of 527 wheat landraces from Shaanxi. The results indicated that 25 accessions (4.74%) were resistant to S. avenae in the three consecutive seasons, of which accession S849 was highly resistant, and seven accessions were moderately resistant. The majority of S. avenae resistant accessions come from Qinling Mountains. Then, the genetic variability of a set of 33 accessions (25 S. avenae resistant and 8 S. avenae susceptible) originating from Qinling Mountains have been assessed by 20 morphological traits and 99 simple sequence repeat markers (SSRs). Morphological traits and SSRs displayed a high level of genetic diversity within 33 accessions. The clustering of the accessions based on morphological traits and SSR markers showed significant discrepancy according to the geographical distribution, resistance to S. avenae and species of accessions. The highly and moderately resistant landrace accessions were collected from the middle and the east part of Qinling Mountains with similar morphology characters, for example slender leaves with wax, lower leaf area, and high ear density. These S. avenae resistant landraces can be used in wheat aphid resistance breeding as valuable resources.

Restricted access

A comparative proteomic analysis of grain proteins during five grain developmental stages of wheat cultivar Chinese Spring (CS) and its 1Sl/1B substitution line CS-1Sl(1B) was carried out in the current study. A total of 78 differentially expressed protein (DEP) spots with at least 2-fold expression difference were detected by two-dimensional electrophoresis (2-DE). Among these, 73 protein spots representing 55 differentially expressed proteins (DEPs) were successfully identified by matrix-assisted laser desorption/ionization time-offlight tandem mass spectrometry (MALDI-TOF/TOF-MS). Differential protein spots between the two genotypes were analyzed by cluster software, which revealed significant proteome differences. There were 39 common spots (including 33 DEPs) that showed significant difference between the two lines across five grain developmental stages, of which 14 DEP spots (including 11 DEPs) were mainly involved in carbohydrate metabolism that were encoded by the genes on 1B chromosome while 25 DEP spots (including 12 DEPs) were mainly related to stress response and gluten quality that were encoded by 1S1 chromosome. These results indicated that the Sl genome harbors more stress and quality related genes that are potential valuable for improving wheat stress resistance and product quality.

Restricted access

Abstract  

The iron contents in the hair and blood samples of 37 juvenile athletes who were supplemented with 0, 8 and 16 mg Fe/day, respectively, in the food of ferrous gluconatecontaining chocolate for 3 months were determined before and after the supplementation by INAA, SRXRF and blood analysis. The experimental results showed that after supplementation of the iron-fortified food, the normal ferritin level in the blood of the male athletes was attained and the iron content in the hair was increased with supplementation, but both are not in the positive proportion. Most of the female athletes had similar results. It is suggested that supplementation of 8 mg iron/day to juvenile athletes may be desirable.

Restricted access

Abstract  

Methyl ethyl ketone peroxide (MEKPO) is an unstable material above certain limits of temperature, decomposing into chain reactions by radicals. The influence of runaway reactions on this basic characteristic was assessed by evaluating kinetic parameters, such as activation energy (E a), frequency factor (A), etc., by thermal activity monitor III (TAM III). This was done under three isothermal conditions of 70, 80, and 90 °C, with MEKPO 31 mass% combined with nitric acid (HNO3 6 N) and sodium nitrate (NaNO3 6 N). Nitric acid mixed with MEKPO gave the maximum heat of reaction (△H d) and also induced serious reactions in the initial stage of exothermic process under the three isothermal temperatures. The time to maximum rate (TMR) also decreased when HNO3 was mixed with MEKPO. Thus, MEKPO combined with HNO3 6 N forms a very hazardous mixture. Results of this study will be provided to relevant plants for alerting their staff on adopting best practices in emergency response or accident control.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: W. Liu, S. Kim, J. Lopez, B. Hsiao, M. Keating, I.-H. Lee, B. Landes, and R. Stein

Abstract  

In this study, the stepwise isothermal crystallization or thermal fractionation of Ziegler—Natta and metallocene based polyethylenes (ZN-PE and m-PE) with two kinds of branch lengths (ethyl and hexyl) and branch compositions were studied using simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). The crystal long period and the invariant were determined by SAXS, and the variations of crystal unit cell parameters and the degree of crystallinity were determined by WAXD. The arithmetic mean length (Ln), the weightedmean length (Lw) and the broadness index (Lw/Ln) of the studied polyethylenes were previously determined by DSC. Results from these studies were interpreted using the model of branch exclusion, which affects the ability of the chain-reentry into the crystal phase. Multiple SAXS peaks and step-change in crystallinity change (WAXD) were seen during heating, which corresponded well with the crystal thickness distribution induced by stepwise crystallization. The effects of the heterogeneity of the 1-olefin branch length and the distribution on the crystal long period and the invariant as well as the degree of crystallinity were discussed.

Restricted access
Cereal Research Communications
Authors: I. Baracskai, G. Balázs, L. Liu, W. Ma, M. Oszvald, M. Newberry, S. Tömösközi, L. Láng, Z. Bedő, and F. Békés

The glutenin allele gene-pool, the distribution of the individual alleles on the 6 loci coding for glutenin subunits and their combinations were determined in a sample population containing 107 cultivars bred and grown in Martonvásár, Hungary at the Agricultural Research Institute of the Hungarian Academy of Sciences. The database is based on the results of three independent analytical procedures carried out using the traditional SDS-PAGE based allele identification, the state-of-art MALDI-TOF technology and the high throughput capillary electrophoresis based on the lab-on-a-chip technique. The usefulness of integrating the information on both HMW GS and LMW GS allelic composition for future genetic and technological improvement is discussed.

Restricted access