Search Results

You are looking at 71 - 80 of 127 items for

  • Author or Editor: L. Wang x
  • All content x
Clear All Modify Search

Abstract  

Systematically complicated technique used for preparing high-intensity (more than 8.0 GBq/cm2)241Am -source by a new enamel technique is presented. High intensity241Am -sources with activities ranging from 3.7 to 37 GBq have been made by this new technique. The activity and photon output have been measured. The results were compared with the data reported by the Radiochemical Centre Amersham in their specification. The photon output of241Am -source produced by us meets the technical specification of241Am -sources produced by Amersham. Moreover, the highest intensity can reach 1789 mCi/cm2. The overall utilization ratio of241Am activity (59.5 keV) is 31.2%.

Restricted access

Abstract  

Thermal analysis of sulfurization of polyacrylonitrile (PAN) with elemental sulfur was investigated by thermogravimetry and differential thermal analysis of the mixture of polyacrylonitrile and elemental sulfur up to 600°C. Due to the volatilization of sulfur, the different heating rate (10 and 20 K min−1) and different mixture proportion of polyacrylonitrile and elemental sulfur were adopted to run the analysis. The different heating rates make the DSC curves of sulfur different, but make the DSC curves of PAN similar. In the DSC curve of sulfur for the heating rate of 20 K min−1 around 400°C, a small exothermic peak occurs at 400°C in the wide endothermic peak around 380∼420°C, indicative of that there is an exothermic reaction around 400°C. In the DSC curves of the mixture, the peaks around 320°C are exothermic as the content of sulfur is below 3.5:1 and endothermic as the content of sulfur is over 4:1, indicating that one of the reactions between PAN and sulfur takes place around 320°C. In the TG curves of the mixture, the mass losses begin at 220°C, and sharply drop down from 280°C. The curves for the low sulfur content obviously show two steps of mass loss, and curves for the high sulfur content show only one step of mass loss, indicative of more sulfur is benefit for the complete sulfurization of PAN. This study demonstrates that the TG/DSC analysis can give the parameter for the sulfurization, even if the starting mixture contains the volatile sulfur.

Restricted access

Abstract  

The heat capacities of trans-(R)-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropanecarboxylic acid in the temperature range from 78 to 389 K were measured with a precise automatic adiabatic calorimeter. The sample was prepared with the purity of 0.9874 mole fraction. A solid-liquid fusion phase transition was observed in the experimental temperature range. The melting point, T m, enthalpy and entropy of fusion, Δfus H m, Δfus S m, were determined to be 344.75±0.02 K, 13.75±0.07 kJ mol−1, 39.88±0.21 J K−1 mol−1, respectively. The thermodynamic functions of the sample, H (T)-H (298.15), S (T)-S (298.15) and G (T)-G (298.15), were reported with a temperature interval of 5 K. The thermal decomposition of the sample was studied by TG analysis, the thermal decomposition starts at ca. 421 K and terminates at ca. 535 K, the maximum decomposition rate was obtained at 525 K. The order of reaction, pre-exponential factor and activation energy, are n=0.14, A=1.15·108 min−1, E=66.27 kJ mol−1, respectively.

Restricted access

Abstract  

The catalytic and accelerating effects of three coal-burning additives (CBA) on the burning of graphite were studied with the help of thermogravimetric (TG) analysis. The kinetic study on the catalytic oxidation of the graphite doped with CBA was carried out and the results were presented. The results show that the CBA can change the carbon oxidation/combustion course by catalytic action and change the activation energy, thus improving the combustion efficiency.

Restricted access

Abstract  

The effects of cisplatin and its trans isomer transplatin on the thermal denaturation of G-actin were studied with a Micro DSC-III differential scanning calorimeter. The denaturation enthalpy of G-actin was found to be 12 J g–1, and the denaturation temperature was 328 K. The thermal denaturation curve showed that increasing cisplatin concentration decreased the enthalpy change. However, after the ratio of cisplatin to G-actin attained 8:1 (mol:mol), the denaturation enthalpy no longer decreased. Transplatin decreased the enthalpy change more rapidly. In contrast with cisplatin, the denaturation peak at 328 K disappeared, and a strong exothermic peak appeared at 341 K when the ratio of transplatin to G-actin was 8:1 (mol:mol). The enthalpy change was 75 J g–1, which is far in excess of the range of weak interactions. This strong exothermic phenomenon probably reflects the agglutination of protein. The effects of cisplatin and transplatin on the number of the free thiol groups of G-actin are discussed.

Restricted access

Molecularly imprinted polymers (MIPs) were synthesized by imprinting a new template—S(-)-1,1′-binaphthalene-2,2′-diamine (S-DABN) and applied as chiral stationary phases for chiral separation of DABN racemates by high-performance liquid chromatography (HPLC). The influence of some key factors on the chiral recognition ability of MIPs, such as the type of functional monomers and porogen and the molar ratio of template to monomer, was systematically investigated. The chromatographic conditions, such as mobile phase composition, sample loading, and flow rate, were also measured. The chiral separation for DABN racemates under the optimum chromatographic conditions by using MIP chiral stationary phase (CSP) of P3, prepared with the S-DABN/MAA ratio = 1/4 and used acetonitrile (2 mL) and chloroform (4 mL) as porogen, showed the highest separation factor (2.14). Frontal analysis was used to evaluate affinity to the target molecule of MIPs. The binding sites (B t) of MIPs and dissociation constant (K d) were estimated as 4.56 μmol g−1 and 1.40 mmol L−1, respectively. In comparison with the previous studies, this approach had the advantages, such as the higher separation factor, easy preparation, and cost-effectiveness, it not only has the value for research but also has a potential in industrial application.

Restricted access

Traditional Chinese medicine (TCM) has been widely used in many countries for thousands of years and played an indispensable role in the prevention and treatment of diseases, especially the complicated and chronic ones. However, the application of TCM in diseases is still not fully recognized by people around the world, the main reason is that Chinese herb is a very complex mixture containing hundreds of different components. Thus, it is essential to make quality control and evaluation of TCM. A new quality evaluation method, quantitative analysis of multi-components by single marker (QAMS), was developed to the quality control of alkaloids in TCM, a case study on Radix aconiti lateralis, named Fuzi in Chinese. Six alkaloids, including aconitine, hypaconitine, mesaconitine, benzoylaconine, benzoylmesaconine, and benzoylhypaconine, were selected as main components to evaluate the quality of Radix aconiti lateralis. The feasibility and accuracy of QAMS were checked by the external standard method, and various high-performance liquid chromatographic instruments and chromatographic conditions were investigated to verify its applicability. Using aconitine as the internal reference substance and the content of aconitine was calculated according to relative correction factors by high-performance liquid chromatography. The present results showed that there was no significant difference observed between the QAMS method and the external standard method with the relative average deviations less than 3.0%, and QAMS is an effective way to control the quality of herbal medicines and seems to be a convenient and accurate approach to analyze multi-composition when reference substances are unavailable.

Restricted access

Summary

A preparative high-speed countercurrent chromatograph (HSCCC) method for the isolation and purification of C6-C2 natural alcohol and benzyl ethanol from Forsythia suspensa was successfully established. Cornoside, forsythenside F, forsythiaside, and acteoside were rapidly obtained for the first time by HSCCC with a two-phase solvent system ethyl acetate-n-butanol-methanol-water (5:1:0.5:5, υ/υ) in one-step separation. The purities of them were all above 97% as determined by high-performance liquid chromatography, and the combination of ESI-MS and NMR analysis confirmed the chemical structures of the four compounds.

Restricted access

Abstract  

Yaozhou Kiln at Lidipo and Shangdian are two independent porcelain kiln groups of Yaozhou kiln series in Shanxi Province. Both of them were consisted of some individual porcelain kilns. The samples of 20 pieces of porcelain sherds produced in Shangdian and 43 pieces of porcelain sherds made in Lidipo sites which produced in Kin Dynasty (1115–1234 A.D.) have been collected. The main chemical compositions in body were determined by X-ray fluorescence (XRF). The contents of trace elements were measured using neutron activation analysis (NAA). Principal component analysis (PCA) and stepwise discriminant analysis were used to study the provenance characteristic of these samples. The results indicated that the main components and trace elements in the specimen can be used to reveal the provenance characteristic.

Restricted access

Summary

Chestnut exhibits anti-inflammatory, styptic, anti-diarrhea, and analgestic effects as a traditional Chinese medicine. There is increasing evidence that shows that the consumption of chestnuts has become more important in human nutrition due to the health benefits provided by the antioxidants. The phenolic compounds are responsible for major bioactivities, such as anti-tumor and anti-oxidation. A high-performance liquid chromatography (HPLC) method with diode array detection (DAD) was established for the simultaneous determination of six phenolic compounds (gallic acid, GA; protocatechuic acid, PR; catechin, CA; epicatechin, EP; quercetin, QU; kaempferol, KA) in Chinese chestnut (Castanea mollissima blume) kernel. The sample followed by separation on Eclipse XDB-C18 column (150 × 4.6 mm, id., 5 μm) with gradient elution of methanol-1.0% acetate acid solution as a mobile phase, at a temperature of 30°C, under the ratio of 1.2 mL min−1, with 5 μL injection volume, and multi-wavelength synthesis was used with DAD. The correlation coefficients were larger than 0.999, the recoveries were 97.58% for GA, 100.41% for PA, 96.23% for CA, 101.38% for QU, 99.15% for EP, and 98.60% for KA, relative standard deviation (RSD) were 1.04% for GA, 1.21% for PA, 1.09% for CA, 1.19% for QU, 1.06% for EP, and 1.20% for KA. This method was applied for the determination of phenolics in chestnut kernel and was found to be fast, sensitive, and suitable.

Restricted access