Search Results

You are looking at 71 - 74 of 74 items for

  • Author or Editor: W. Liu x
  • All content x
Clear All Modify Search

Citri Grandis Exocarpium (CGE) is a traditional Chinese medicine with a variety of biological activities. For efficient quality control of CGE, a simple, rapid, and accurate high-performance liquid chromatographic (HPLC) method was developed for simultaneous determination of four main compounds (naringin, rhoifolin, meranzin hydrate, and isoimperatorin) in this herb. These four compounds were separated on a C18 column by gradient elution with methanol and water. The flow rate was 1.0 mL·min−1, and the detection wavelength was 324 nm. The recoveries of the method ranged from 96.32% to 103.71%, and good linear relationships (r 2 > 0.9998) over relative wide concentration ranges were obtained. Then this validated method was successfully applied to the analysis of nine batches of CGE samples.

Open access

Abstract  

To investigate the effects of lanthanum exposure on regional distribution of inorganic elements in rat brain. Wistar rats were exposed to lanthanum chloride through oral administration at 0, 0.1, 2, and 40 mg/kg concentration for 6 months. The elements such as Cl, K, Ca, Fe, Cu, and Zn were identified in the brain slices by synchrotron radiation X-ray fluorescence (SRXRF) analysis. Differences of brain elemental distributions were noticed. Cl, Ca, and Zn were primarily concentrated in hippocampus of the controls. With the increase of the lanthanum dosage, the Ca and Zn levels significantly decreased, while the Cu levels significantly elevated in cortex, hippocampus and thalamus. Our results suggest that subchronic lanthanum exposure in rats appears to change elemental distributions in brain.

Restricted access
Cereal Research Communications
Authors: H.Y. Li, Z.L. Li, X.X. Zeng, L.B. Zhao, G. Chen, C.L. Kou, S.Z. Ning, Z.W. Yuan, Y.L. Zheng, D.C. Liu, and L.Q. Zhang

High-molecular-weight glutenin subunits (HMW-GSs) are important seed storage proteins associated with bread-making quality in common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD). Variation in the Glu-A1x locus in common wheat is scare. Diploid Triticum monococcum ssp. monococcum (2n = 2x = 14, AmAm) is the first cultivated wheat. In the present study, allelic variations at the Glu-A1 m x locus were systematically investigated in 197 T. monococcum ssp. monococcum accessions. Out of the 8 detected Glu-A1 m x alleles, 5 were novel, including Glu-A1 m-b, Glu-A1 m-c, Glu-A1 m-d, Glu-A1 m-g, and Glu-A1 m-h. This diversity is higher than that of common wheat. Compared with 1Ax1 and 1Ax2*, which are present in common wheat, these alleles contained three deletions/insertions as well as some single nucleotide polymorphism variations that might affect the elastic properties of wheat flour. New variations in T. monococcum probably occurred after the divergence between A and Am and are excluded in common wheat populations. These allelic variations could be used as novel resources to further improve wheat quality.

Restricted access

Shuganjieyu (SGJY) capsule is a classical formula widely used in Chinese clinical application. In this paper, an ultra-performance liquid chromatography coupled with electrospray ionization and ion trap mass spectrometry has been established to separate and identify the chemical constituents of SGJY and the multiple constituents of SGJY in rats. The chromatographic separation was performed on a C18 RRHD column (150 × 2.1 mm, 1.8 μm), while 0.1% formic acid–water and 0.1% formic acid–acetonitrile was used as mobile phase. Mass spectral data were acquired in both positive and negative modes. On the basis of the characteristic retention time (R t) and mass spectral data with those of reference standards and relevant references, 73 constituents from the SGJY and 15 ingredients including 10 original constituents and 5 metabolites from the rat plasma after oral administration of SGJY were identified or tentatively characterized. This study provided helpful chemical information for further pharmacology and active mechanism research on SGJY.

Open access