Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Andrzej Torbicz x
  • Chemistry and Chemical Engineering x
  • All content x
Clear All Modify Search

We have investigated the use of pressurized planar electrochromatography (PPEC) and planar chromatography (TLC) for reversed-phase separation of a mixture of acetylsalicylic acid, caffeine, and acetaminophen. The mixture was separated on C18 plates; the mobile phase was prepared from acetonitrile (ACN), buffer, and bidistilled water. The effects of operating conditions such as mobile phase composition, type of the stationary phase, and mobile phase buffer pH on migration distance, separation selectivity, and separation time in TLC and PPEC were compared. The results showed that pressurized planar electrochromatography of these drugs is characterized by faster separation, better performance, and different separation selectivity. In conclusion, PPEC is a very promising mode for future application in pharmaceutical analysis.

Restricted access
JPC - Journal of Planar Chromatography - Modern TLC
Authors: Radosław Łukasz Gwarda, Wojciech Szwerc, Monika Aletańska-Kozak, Anna Klimek-Turek, Andrzej Torbicz, Adam Chomicki, Ryszard Kocjan, Dariusz Matosiuk, and Tadeusz Henryk Dzido

In our previous papers, we have mentioned some specific disruption of peptide zones shape and chromatogram distortion, when using mobile phase containing ion-pairing acids. This problem is investigated here. It concerns not only some specific separation conditions but also various separation systems with silica-based adsorbents and water—alcohol mobile phases. We show that the problem results from significant amount of metallic impurities present in the adsorbents investigated. Our results prove that these impurities strongly affect the activity of free silanol groups and thus the retention of basic or amphoteric compounds and the quality of the results obtained. The standard method of washing adsorbent layer with methanol is not effective against the impurities. Washing chromatographic plates with a solution containing an acid significantly reduces the amount of metallic impurities in the adsorbent, resulting in the reduction/elimination of these adverse effects. However, it also leads to the increase of heterogeneity of acidic groups activity and deterioration of separation system efficiency. Therefore, removing metal ions from the adsorbent may not always be advantageous. Avoiding of use of strong ion-pairing acids is also problematic and not always possible. Thus, the production of high-purity silica of homogenous activity seems to be the best and the most reliable solution of the problem described.

Restricted access