Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Hui Yuan x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Studies on the application of microorganisms immobilized by radiation in the pharmaceutical industry

Dehydrogenation of cortisone acetate to prednisone acetate catalyzed by immobilized A. simplex by-2-13

Journal of Radioanalytical and Nuclear Chemistry
Authors: Zhang Zhi-Hui and Yuan Zhi-Gang

Abstract  

Immobilization of the bacteria A. simplex by-2-13 was obtained by irradiation polymerization with an electron beam and gamma-radiation at 0°C. Prednisone acetate (P. A.) was derived from cortisone acetate (C. A.) by 1,2-dehydrogenation, catalyzed by immobilized A. simplex by-2-13. The immobilized bacteria were used 10 times in succession with a transformation percentage ranging from 77 to 86% for electron beam radiation and 79 to 99% for gamma radiation. Dehydrogenation, was carried out at pH 7.2, 34°C, 180–200 r.p.m. for 24 hours. 3% (v/v) anhydrous alcohol was added to the system at onset. Scanning electron micrographs documented the structure of the immobilized bacteria. In this work, the effect of absorbable doses of radiation and the reaction time of non-immobilized bacteria on dehydrogenase activity were studied. The effect of pH, temperature and concentration of substrate were also studied.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: Jun Tang, Gengmei Xing, Hui Yuan, Xingfa Gao, Long Jing, Shukuan Wang, Yue Cheng, and Yuliang Zhao

Abstract  

The electronic properties of the metal atoms encaged in a fullerence cage were investigated using synchrotron X-ray photoelectron spectroscopy. Systematic variations in photoemission of valence band of Gd@C82, Gd@C82(OH)12, and Gd@C82(OH)22 were observed in Gd 5p levels. The results suggest that the electronic properties of the inner metal atom can be efficiently modulated by surface chemistry of the fullerene cage.

Restricted access

Abstract  

The water-solubilization of metallofullerenes is important for their potential applications, but their formation processes are still not clear, and the formation yield is uncontrollable. In this paper, we quantitatively studied the water-solubilizing process of Gd@C82 with hydroxylation reaction using ICP-MASS techniques. For the first time, it was found that the formation yield of the multihydroxylated Gd@C82 is declined quickly with the break up of carbon cage of Gd@C82 in the hydroxylated processes. The observation revealed a way to control the hydroxylation processes and increase the formation yield.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: Zhen Chen, Huan Meng, Hui Yuan, Gengmei Xing, Chunying Chen, Feng Zhao, Yun Wang, Chengcheng Zhang, and Yuliang Zhao

Abstract  

Nanosized copper particles are widely used in fields of lubricants, polymers/plastic, metallic coating and ink. Recently, we found that copper particles in different sizes can lead to different toxicological effects. To clarify the target organs of copper particles of different sizes, the inductively coupled plasma mass spectroscopy (ICP-MS) was employed to evaluate the distribution of copper in different organs of mice after a single dose oral exposure. The results suggest that the main target organs for copper nanoparticles are kidney, liver and blood. Liver is the main damaged organ.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: Huan Meng, Zhen Chen, Gengmei Xing, Hui Yuan, Chunying Chen, Feng Zhao, Chengcheng Zhang, Yun Wang, and Yuliang Zhao

Abstract  

Recently, it was reported that the toxicity of copper particles increases with the decrease of the particle size on a mass basis. To understand this phenomenon, inductively coupled plasma mass spectrometry (ICP-MS) techniques and in vitro chemical studies were carried out to explore how they produce toxicity in vivo. The results suggest that when the sizes of particles become small and down to a nanoscale, copper becomes extremely reactive in a simulative intracorporeal environment. The nanosized copper particles consume the hydrogen ions in stomach more quickly than micron ones. These processes further convert the copper nanoparticles into cupric ions whose toxicity is very high in vivo.

Restricted access