Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: J. Manojlovič x
  • Mathematics and Statistics x
  • All content x
Clear All Modify Search

Abstract  

We present some criteria for the oscillation of the second order nonlinear differential equation [a(t)ψ(x(t))x'(t)]' + p(t)x'(t) + q(t)f (x(t)) =0, tt 0> 0 with damping where aC 1 ([t 0,∞)) is a nonnegative function, p, q∈ C([t 0,∞)) are allowed to change sign on [t 0,∞), ψ, f∈C(R) with ψ(x) ≠ 0, xf(x)/ψ(x) > 0 for x≠ 0, and ψ, f have continuous derivatives on R{0} with [f(x) / ψ(x)]' ≧ 0 for x≠ 0. This criteria are obtained by using a general class of the parameter functions H(t,s) in the averaging techniques. An essential feature of the proved results is that the assumption of positivity of the function ψ(x) is not required. Consequently, the obtained criteria cover new classes of equations to which known results do not apply.

Restricted access