Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: J. Omtvedt x
  • Chemistry and Chemical Engineering x
  • All content x
Clear All Modify Search

Abstract  

Off-line and on-line studies have been performed with radioactive tracers of various elements to develop a chemical separation procedure for bohrium (element 107). The proposed procedure is intended for use in the fast solvent extraction system SISAK. The homologs technetium and rhenium were used to model the chemical behavior of bohrium. The results show that high decontamination factors can be obtained for technetium and rhenium with respect to unwanted contaminants like trivalent actinides, polonium and the Group 5 elements.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: B. Wierczinski, J. Alstad, K. Eberhardt, J. Kratz, R. Malmbeck, M. Mendel, A. Nähler, J. Omtvedt, G. Skarnemark, N. Trautmann, and N. Wiehl

Abstract  

Fast solvent extraction is a chemical separation method, which can be applied to study exotic nuclides. Since about 1970 the SISAK technique, which is an on-line method based on multi-stage solvent extraction separations, has been successfully used to investigate the nuclear properties of β-decaying nuclides with half-lives down to about one second. During the last decade it has become possible to produce transactinide elements in high enough yields to investigate their chemical properties on a one-atom-at-a-time scale. For this purpose it was necessary to improve and change the detection part of the SISAK system in order to be capable to detect spontaneously fissioning and α-decaying nuclides in a flowing organic solution. This technique is based on liquid scintillation counting with pulse-shape discrimination and pile-up rejection

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: B. Wierczinski, K. Gregorich, B. Kadkhodayan, D. Lee, L. Beauvais, M. Hendricks, C. Kacher, M. Lane, D. Keeney-Shaughnessy, N. Stoyer, D. Strellis, E. Sylwester, P. Wilk, D. Hoffman, R. Malmbeck, G. Skarnemark, J. Alstad, J. Omtvedt, K. Eberhardt, M. Mendel, A. Nähler, and N. Trautmann

Abstract  

Subsecond 224 Pa (T 1/2 = 0.85 s) was produced via the 209 Bi(18 O,3n)224 Pa reaction at the 88 inch cyclotron at the Lawrence Berkeley National Laboratory. After production it was transported via a gas-jet system to the centrifuge system SISAK 3. Following on-line extraction with trioctylamine/scintillation solutions from 1M lactic acid, 224 Pa was detected applying on-line -liquid scintillation counting. Unambiguous identification was achieved using time-correlated --decay chain analysis. This constitutes the first chemical on-line separation and detection of a subsecond -decaying nuclide, 0.85-s 224 Pa with the fast extraction system SISAK 3.

Restricted access