Search Results

You are looking at 1 - 10 of 14 items for :

  • Author or Editor: L. Lv x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search

Summary

A simple and sensitive method of high-performance liquid chromatography with fluorescence detection (HPLC-FLD) was developed for the determination of icariin in capsules by precolumn chelation with aluminum. In order to obtain a stable fluorescence signal, the reaction conditions of the fluorescent chelation complex between icariin and aluminum were investigated in detail. Chromatography was carried out on an Agilent Zorbax Extend C18 column (150 mm × 4.6 mm, 5.0 μm) using methanol as mobile phase at a flow rate of 1.0 mL min−1. The excitation and emission wavelengths were set at 430 and 480 nm, respectively. At optimum conditions, the calibration curve was linear in the concentration range from 0.010 to 100.0 μg mL−1 with the limit of detection of 3.5 ng mL−1 (S/N = 3). A comprehensive method was validated for precision and accuracy. The method described here has been successfully applied for the determination of the icariin content in a capsule with satisfactory results.

Full access

Abstract  

Aluminum (Al) nanopowders with mean diameter of about 50 nm and passivated by alumina (Al2O3) coatings were prepared by an evaporation route: laser heating evaporation. Thermal properties of the nanopowders were investigated by simultaneous thermogravimetric-differential thermal analysis (TG-DTA) in dry oxygen environment, using a series of heating rates (5, 10, 20, 30, 50 and 90°C min−1) from room temperature to 1200°C. With the heating rates rise, the onset and peak temperatures of the oxidation rise, and the conversion degree of Al to Al2O3 varies. However, the specific heat release keeps relatively invariant and has an average value of 18.1 kJ g−1. So the specific heat release is the intrinsic characteristic of Al nanopowders, which can represent the ability of energy release.

Restricted access

Abstract  

The molar heat capacity C p,m of 1,2-cyclohexane dicarboxylic anhydride was measured in the temperature range from T=80 to 390 K with a small sample automated adiabatic calorimeter. The melting point T m, the molar enthalpy Δfus H m and the entropy Δfus S m of fusion for the compound were determined to be 303.80 K, 14.71 kJ mol−1 and 48.43 J K−1 mol−1, respectively. The thermodynamic functions [H T-H 273.15] and [S T-S 273.15] were derived in the temperature range from T=80 to 385 K with temperature interval of 5 K. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetry (TG), when the process of the mass-loss was due to the evaporation, instead of its thermal decomposition.

Restricted access

Abstract  

A complex of neodymium perchloric acid coordinated with L-glutamic acid and imidazole, [Nd(Glu)(H2O)5(Im)3](ClO4)6·2H2O was synthesized and characterized by IR and elements analysis for the first time. The thermodynamic properties of the complex were studied with an automatic adiabatic calorimeter and differential scanning calorimetry (DSC). Glass transition and phase transition were discovered at 221.83 and 245.45 K, respectively. The glass transition was interpreted as a freezing-in phenomenon of the reorientational motion of ClO4 ions and the phase transition was attributed to the orientational order/disorder process of ClO4 ions. The heat capacities of the complex were measured with the automatic adiabatic calorimeter and the thermodynamic functions [H T-H 298.15] and [S T-S 298.15] were derived in the temperature range from 80 to 390 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC).

Restricted access

Summary

In the present paper, a simple and reliable high-performance liquid chromatography-diode array detection (HPLC-DAD) method was developed both for quantitative determination and fingerprint analysis of Agrimonia pilosa Ledeb for quality control. Under the optimized HPLC conditions, seven bioactive compounds including rutin, quercetin-3-rhamnoside, luteoloside, tiliroside, apigenin, kaempferol, and agrimonolide were determined simultaneously. For fingerprint analysis, 11 common peaks were selected as the characteristic peaks to evaluate the similarities of 16 different samples collected from different origins in China. Besides, hierarchical cluster analysis (HCA) was also performed to evaluate the variation of the raw materials. This is the first report of using a simple method for quality control of A. pilosa Ledeb through multi-component determination and chromatographic fingerprint analysis to the best of our knowledge.

Full access

Hydrated goethite nanorodS

Vibration spectral properties, thermal stability, and their potential application in removing cadmium ions

Journal of Thermal Analysis and Calorimetry
Authors: X. Qiu, L. Lv, G. Li, W. Han, X. Wang, and L. Li

Abstract  

Vibration spectral properties and dehydration behaviors of goethite nanorods with diameters ranging from 13 to 32 nm were investigated using infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. All goethite nanorods were highly hydrated with physisorbed and chemisorbed water. As the diameters of goethite nanorods increased, the hydroxyl deformation vibration in the a-b plane showed a significant blue shift, while the Fe-O vibration in the a-b plane shifted to lower frequencies, indicating an enhancement of O-H bond and the ionicity of Fe-O in a-b plane. The hydrated goethite nanorods are also proved to be useful in environmental remedy because of their excellent removal ability of heavy metal ions.

Restricted access

Epimedium pubescens Maxim. and Epimedium koreanum Nakai. are two common and confused species of Herba Epimedii in Chinese Pharmacopoeia 2010 edition. Different species and growing conditions lead to chemical differences between the two species which may result in the improper clinical usage. In this work, a new method based on rapid-resolution liquid chromatography combined with time-of-flight mass spectrometry (RRLC/TOFMS) has been developed for identification and differentiation of major flavonoids in two kinds of Epimedium extract and rat plasma. The compounds were identified effectively based on the accurate extract masses and formulae acquired by RRLC/TOFMS. The fragmentation rules deduced by collision-induced dissociation (CID) were successfully implemented in distinguishing some of the isomers, further validating the results. By using the combined analytical techniques, a total of 40 major flavonoids in extracts of two kinds of Epimedium were identified within 30 min, including 31 common components and 9 characteristic components. After oral administration, three prototype compounds in rat plasma were detected by comparing the constituents measured in vitro with those in vivo, and five metabolites were identified by contrasting the fragmentation rules. The identification and structural elucidation of the chemical constituents provided essential data for further pharmacological and clinical studies on different species of Epimedium.

Full access

Abstract  

The molar heat capacities C p,m of 2,2-dimethyl-1,3-propanediol were measured in the temperature range from 78 to 410 K by means of a small sample automated adiabatic calorimeter. A solid-solid and a solid-liquid phase transitions were found at T-314.304 and 402.402 K, respectively, from the experimental C p-T curve. The molar enthalpies and entropies of these transitions were determined to be 14.78 kJ mol−1, 47.01 J K−1 mol for the solid-solid transition and 7.518 kJ mol−1, 18.68 J K−1 mol−1 for the solid-liquid transition, respectively. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 310 K, C p,m/(J K−1 mol−1)=117.72+58.8022x+3.0964x 2+6.87363x 3−13.922x 4+9.8889x 5+16.195x 6; x=[(T/K)−195]/115. In the temperature range of 325 to 395 K, C p,m/(J K−1 mol−1)=290.74+22.767x−0.6247x 2−0.8716x 3−4.0159x 4−0.2878x 5+1.7244x 6; x=[(T/K)−360]/35. The thermodynamic functions H TH 298.15 and S TS 298.15, were derived from the heat capacity data in the temperature range of 80 to 410 K with an interval of 5 K. The thermostability of the compound was further tested by DSC and TG measurements. The results were in agreement with those obtained by adiabatic calorimetry.

Restricted access

Thermodynamic investigation of room temperature ionic liquid

Heat capacity and thermodynamic functions of BPBF4

Journal of Thermal Analysis and Calorimetry
Authors: Z. Zhang, L. Sun, Z. Tan, F. Xu, X. Lv, J. Zeng, and Y. Sawada

Abstract  

The molar heat capacities of the room temperature ionic liquid 1-butylpyridinium tetrafluoroborate (BPBF4) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature X by polynomial equations, C p,m [J K−1 mol−1]=181.43+51.297X −4.7816X 2−1.9734X 3+8.1048X 4+11.108X 5 [X=(T−135)/55] for the solid phase (80–190 K), C p,m [J K−1 mol−1]= 349.96+25.106X+9.1320X 2+19.368X 3+2.23X 4−8.8201X 5 [X=(T−225)/27] for the glass state (198–252 K), and C p,m[J K−1 mol−1]= 402.40+21.982X−3.0304X 2+3.6514X 3+3.4585X 4 [X=(T−338)/52] for the liquid phase (286–390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BPBF4 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass transition of BPBF4 was observed at 194.09 K, the enthalpy and entropy of the glass transition were determined to be ΔH g=2.157 kJ mol−1 and ΔS g=11.12 J K−1 mol−1, respectively. The result showed that the melting point of the BPBF4 is 279.79 K, the enthalpy and entropy of phase transition were calculated to be ΔH m = 8.453 kJ mol−1 and ΔS m=30.21 J K−1 mol−1. Using oxygen-bomb combustion calorimeter, the molar enthalpy of combustion of BPBF4 was determined to be Δc H m 0 = −5451±3 kJ mol−1. The standard molar enthalpy of formation of BPBF4 was evaluated to be Δf H m 0 = −1356.3±0.8 kJ mol−1 at T=298.150±0.001 K.

Restricted access

Summary

A new HPLC method has been established for determination of 3-monoiodotyrosine (MIT), 3,5-diiodotyrosine (DIT), 3,5-diiodothyronine (T2), 3,3′,5-triiodothyronine (T3), 3,3′,5′-triiodothyronine (rT3), and thyroxine (T4) produced by hydrolysis of iodinated casein with barium hydroxide. The hydrolytic stability of each analyte was evaluated. Iodinated casein was hydrolyzed with saturated barium hydroxide solution for 16 h at 110°C and the barium ions were then removed as barium sulfate. Reversed-phase HPLC was performed on a 2.1 mm × 150 mm, 5 μm particle, C18 column with a mixture of acetonitrile and 0.1% (v/v) formic acid as mobile phase at a flow rate of 0.2 mL min–1. Acetonitrile was maintained at 5% (v/v) for 5 min and then increased linearly to 50% (v/v) within 35 min. All analytes were quantified by measuring the absorbance at 280 nm. Validation data indicated the method was linear, with regression coefficients (R 2) > 0.998, in the concentration ranges investigated. Sensitivity was adequate—limits of detection (LOD) were 0.04–0.38 μg mL–1 and limits of quantification (LOQ) were 0.05–0.38 μg mL–1. Accuracy and precision were acceptable — for all the analytes recovery was 82.0–93.0% and repeatability, as relative standard deviation, was 1.0–3.0%. Hydrolytic stability tests indicated MIT and DIT are much more stable than the other analytes. rT3 was not released directly from iodinated casein but was formed by deiodination of T4 during hydrolysis. The method could be used to identify iodinated casein, to evaluate its activity and quality, and for supervision and regulation of feed additives.

Full access