Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: L. Peng x
  • Biology and Life Sciences x
  • All content x
Clear All Modify Search

The purpose of this study was to investigate the effects of endophytic fungi from tartary buckwheat on the host sprout growth and functional metabolite production. Without obvious changes in the appearance of the sprouts, the exogenous fungal mycelia elicitors notably stimulated the sprout growth and rutin accumulation, and the stimulation effect was mainly depended on the mycelia elicitor species along with its treatment dose. Three endophytic fungi Fat6 (Bionectria pityrodes), Fat9 (Fusarium oxysporum) and Fat15 (Alternaria sp.) were screened to be the most effective candidates for promoting F. tataricum sprout growth and rutin production. With application of polysaccharide (PS, 150 mg/l) of endophyte Fat6, PS (200 mg/l) of endophyte Fat9, and PS (150 mg/l) of endophyte Fat15, the rutin yield was effectively increased to 47.89 mg/(100 sprouts), 45.85 mg/(100 sprouts) and 46.83 mg/(100 sprouts), respectively. That was about 1.5- to 1.6-fold compared to the control culture of 29.37 mg/(100 sprouts). Furthermore, the present study revealed that the biosynthesis of the functional flavonoid resulted from the stimulation of the phenylpropanoid pathway by mycelia polysaccharide treatments. Application of specific fungal elicitors could be an efficient strategy for improving the nutritional and functional quality of tartary buckwheat sprouts.

Restricted access

This study was to examine the effects of four fungal polysaccharides, namely exo-polysaccharide (EPS), water-extracted mycelia polysaccharide (WPS), sodium hydroxideextracted mycelia polysaccharide (SPS), and hydrochloric-extracted mycelia polysaccharide (APS) obtained from the endophytic fungus Bionectra pityrodes Fat6, on the sprout growth and flavonoids production of Fagopyrum tataricum. Without obvious changes in the appearance of the sprouts, the exogenous polysaccharide elicitors notably stimulated the sprout growth and functional metabolites accumulation, and the stimulation effect was mainly depended on the polysaccharide species along with its treatment dose. With application of 150 mg/l of EPS, 150 mg/l of WPS and 200 mg/l of SPS, the total rutin and quercetin yield of buckwheat sprouts was effectively increased to 49.18 mg/(100 sprouts), 50.54 mg/(100 sprouts), and 52.27 mg/(100 sprouts), respectively. That was about 1.57- to 1.66-fold in comparison with the control culture of 31.40 mg/(100 sprouts). Moreover, the present study revealed the accumulation of bioactive flavonoids resulted from the stimulation of the phenylpropanoid pathway by fungal polysaccharide treatments. It could be an efficient strategy for improving the nutritional and functional quality of tartary buckwheat sprouts applied with specific fungal elicitors.

Restricted access

High ozone (O3) can cause great damage to plants. However, the effect of high O3 on nitrogen (N) absorption, distribution, and utilization in rice at different growth stages under different planting densities is poorly understood. In the present study, a conventional cultivar (Yangdao 6) and a hybrid cultivar (II You 084) with different planting densities were exposed to an elevated amount of O3 (E-O3; 50% higher than that of the control, C-O3) under a freeair gas concentration enrichment (FACE) system. N absorption, distribution, and utilization of the green leaves, stems, and shoots at tillering, jointing heading, and maturity were investigated. Results showed that E-O3 significantly increased the N content in the shoots of Yangdao 6 by 7.5%, 12.7%, and 19.6%, respectively, at jointing, heading, and maturity. Also, the N content in the shoots of II You 084 increased by 5.4%, 6.5%, and 8.4% at the corresponding growth stage upon E-O3 application. E-O3 significantly decreased N accumulation of II You 084 by 8.3%, 4.9%, 4.7%, and 19.2%, respectively, at tillering, jointing, heading, and maturity. Further, E-O3 had a decreasing effect on the N distribution in green leaves (p ≤ 0.05) of both cultivars, but exerted an increasing effect on that in the stems of both cultivars (p ≤ 0.05). In addition, E-O3 significantly decreased the N use efficiency (NUE) for biomass of the two cultivars in all growth stages. These results revealed that E-O3 could increase the N content in rice plants but decrease the N accumulation and utilization in both cultivars. The effects of E-O3 on N absorption, distribution, and utilization were not affected by planting density.

Restricted access