Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: M. Lourenço x
  • Chemistry and Chemical Engineering x
  • All content x
Clear All Modify Search

Abstract  

Thoron (220Rn) is a gaseous decay product of232Th decay chain which becomes a potential source of internal contamination for individuals who handle significant amounts of ores and raw materials containing thorium. With the objective of establishing an occupational control of such workers, a methodology which permits, by means of in-vivo measuremens, the determination of the level of internally deposited220Rn daughters (212Pb,212Bi, and208TI), was developed at the Institute of Radiation Protection and Dosimetry/Brazilian Nuclear Energy Commission (IRD/CNEN) whole body counter. Previous calibration of an 8×4 NaI(Tl) detector was carried out using the lawrence Livermore National Laboratory (LLNL) thorax phantom with the lung cavity filled withi plastic bags containing28Th standard solution. After sealing, the bags are stored until radioactive equilibrium is reached. Patients are measured for I h in two steps, at an interval of approximately 20 h, Positioning the detector over the thorax. A comparison of the activities determined at each measurement allows the distrimination of the contribution of the internally deposited shoret-and longlived radionuclides. This technique was recently applied to a group of workers at a gas mantle industry in Rio de Janeiro. Results of these measurements will be shown.

Restricted access

Abstract  

The construction of reliable bone phantoms to calibrate whole body counting facilities for bone-seeking radionuclides has been a challenge for several research institutes. Different techniques have been applied to get uniform distribution of those nuclides in bone tissue. A241Am skull phantom was developed at the Institute of Radiation Protection and Dosimetry/Brazilian Nuclear Energy Commission's (IRD/CNEN) Whole Body Counting facility, using a dipping procedure. Preliminary tests were performed using non-radioactive ink solution. The first step was to choose the appropriate solvent to be used, since it was observed that acid solutions attack bone tissue. At the second step, pieces of skull were dipped into those solutions to check the extent and homogeneity of the penetration. The third step consisted of verifying the dipping time using a241Am standard solution. The homogeneity was checked with a high-purity germanium detector. Tissue-equivalent material was used to cover the skull surface and to simulate the low energy X and gamma radiation attenuation. The calibration factor and the detection limit were calculated for two phoswich detectors positioned at each side of the head, which is the standard geometry for this kind of measurement.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: M. Evora, L. Machado, V. Lourenço, O. Gonçalez, H. Wiebeck, and L. de Andrade e Silva

Abstract  

The aim of this work is to study the ionizing radiation effects on thermal properties of there cycled polyamide-6. This polymer was irradiated with an electron beam of 1.5 MeV with different doses. The thermal properties of the samples were determined by TG, DSC and DMA measurements. It was observed that the irradiated samples of recycled polyamide-6undergo a crosslinking process.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: M. Bernardi, E. Antonelli, A. Lourenço, C. Feitosa, L. Maia, and A. Hernandes

Abstract  

The results reported here based on a study of BaTi1–xZrxO3 (x=0, 0.2 and 1) nanometric powders prepared by the modified Pechini method. The powder samples annealed from 600 to 1000C/2 h were characterized by thermogravimetric analysis (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The decomposition reactions of resins were studied using thermal analysis measurements. The barium titanate zirconate system presented just one orthorhombic phase. Furthermore, this study produced BaTiO3 powders with a tetragonal structure using shorter heat treatments and less expensive precursor materials than those required by the traditional methods.

Restricted access
Journal of Flow Chemistry
Authors: Ingrid C. R. Costa, Ivaldo Itabaiana Jr., Marcella C. Flores, Ana Clara Lourenço, Selma G. F. Leite, Leandro S. de M. e Miranda, Ivana C. R. Leal, and Rodrigo O. M. A. de Souza

Abstract

The use of glycerol derived from biodiesel industry is an important development to add value to this actual waste. Several products can be obtained from glycerol, but acetins are very interesting molecules with a wide range of applications in pharmaceutical, cosmetics, food, and fuel industry. Herein we report our results on biocatalyzed batch and continuous-flow process for valorization of glycerol derived from biodiesel industry towards acetin production. Excellent results can be obtained with different selectivities depending on the nature of glycerol used and reaction conditions being able to produce monoacetin, diacetin, or triacetin depending on the reaction condition.

Restricted access