Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: P. Zhao x
  • Biology and Life Sciences x
  • All content x
Clear All Modify Search

Barley yellow dwarf virus-GAV (BYDV-GAV) is one of the most serious viruses on wheat in China. In this study, five BYDV-GAV isolates collected from five regions in Northwestern China were sequenced. The complete genome sequences generated in this study along with nine genome sequences of BYDV-GAV isolates available in GeneBank were compared and analyzed. The comparative analysis indicated that the complete genomes of BYDV-GAV showed a low level of genetic diversity with nucleotide sequence identities ranging between 97.0% and 99.7%, and the RNA-dependent RNA polymerase gene (ORF1 + ORF2) was the most variable within the complete genome. Phylogenetic analysis indicated that the BYDV-GAV isolates in Northwestern China could be divided into two groups. In addition, two potential recombination events were detected among the 14 BYDV-GAV isolates. This study provided a detailed description of molecular characterization of BYDV-GAV in Northwestern China based on the complete genome sequences, which increased the understanding of genetic diversity of barley yellow dwarf viruses.

Restricted access

This study was to examine the effects of four fungal polysaccharides, namely exo-polysaccharide (EPS), water-extracted mycelia polysaccharide (WPS), sodium hydroxideextracted mycelia polysaccharide (SPS), and hydrochloric-extracted mycelia polysaccharide (APS) obtained from the endophytic fungus Bionectra pityrodes Fat6, on the sprout growth and flavonoids production of Fagopyrum tataricum. Without obvious changes in the appearance of the sprouts, the exogenous polysaccharide elicitors notably stimulated the sprout growth and functional metabolites accumulation, and the stimulation effect was mainly depended on the polysaccharide species along with its treatment dose. With application of 150 mg/l of EPS, 150 mg/l of WPS and 200 mg/l of SPS, the total rutin and quercetin yield of buckwheat sprouts was effectively increased to 49.18 mg/(100 sprouts), 50.54 mg/(100 sprouts), and 52.27 mg/(100 sprouts), respectively. That was about 1.57- to 1.66-fold in comparison with the control culture of 31.40 mg/(100 sprouts). Moreover, the present study revealed the accumulation of bioactive flavonoids resulted from the stimulation of the phenylpropanoid pathway by fungal polysaccharide treatments. It could be an efficient strategy for improving the nutritional and functional quality of tartary buckwheat sprouts applied with specific fungal elicitors.

Restricted access

Male sterile mutants play an important role in the utilisation of crop heterosis. Male sterile plants were found in S5 generations of maize hybrid ZH2, through continuous sib-mating by using the fertile plants in the same population, we obtained a male sterile sibling population K932MS including sterile plants K932S and a fertile plant K932F. The objective of this study was to clarify the genetic characterisation and abortion characteristics by nucleus and cytoplasm effect analyses, cytoplasm grouping, and cytological observation. The results showed that no difference was found between K932S and K932F in the vegetative growth stage, but K932S had no emerging anther or pollen grains. The segregation ratio of fertile plants to sterile plants was 1:1 in the sibling progenies, while it was 3:1 in self-crossing progenies of K932F. The sterility of K932S could be restored among reciprocal progenies when seven normal inbred lines were used as females respectively. The fertility expression of K932S crossed with 30 testers would be changed in different test-crosses and some backcross progenies. The C-type restorer Zifeng-1 (Rf4Rf4) was able to restore the fertility of K932S, and the specific PCR amplification bands of K932MS were consistent with CMSCMo17. The anther of K932S began abortion at dyad with its tapetum expanded radically and vacuolated: this induced abnormality in the shapes of both dyads and tetrads. The microspore could not develop normally, and then it collapsed and gradually disappeared. Hence, K932MS is a C-type cytoplasmic male sterile mutant with a pollen-free, stable inheritance: it has potential application value for further research.

Restricted access
Cereal Research Communications
Authors: W.T. Xue, A. Gianinetti, R. Wang, Z.J. Zhan, J. Yan, Y. Jiang, T. Fahima, G. Zhao, and J.P. Cheng

Crop seeds are the main staples in human diet, especially in undeveloped countries. In any case, the diet needs to be rich not only in macro-nutrients like carbohydrates and protein, but also in micro-nutrients. Nevertheless, both the macro- and micro-nutrients presented in seeds largely vary in consequence of field and environment conditions. In this research, 60 lines of a barley RILs population segregating for the SSR marker Hvm74, which is genetically linked to the GPC (grain protein content) locus (HvNAM-1), were studied in 4 environments (two growing years and two field managements) by carrying out a comprehensive profile of seed macro- (starch, total nitrogen and total soluble protein) and micro-nutrients (phytate, phenolics, flavonoids, Pi, Zn and Fe). Under field conditions, all the components were largely affected by the environment, but TN (total nitrogen) exhibited high genotype contribution, while micro-nutrients displayed higher genotype × environments interactions (GEI) than macro-nutrients. In order to approach the effects of carbon-nitrogen (C–N) balance on other seed components, two C/N ratios were calculated: C/TN (CNR1) and C/TSP (CNR2). CNR2 exhibited stronger negative correlations with all micro-nutrients. Hence, the significant GEI and its negative relationships with CNR2 highlighted the different characters of micro-nutrients in barley seeds.

Open access