Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: R. Zhou x
  • Biology and Life Sciences x
  • All content x
Clear All Modify Search

The Avenin-like gene (EU096532) was cloned from Aegilops biuncialis (2n = 4X, UUMM) in our previously study, the encoded gluten protein contained 19 cysteine residues, much more than that in all other glutenin subunits characterized so far. In present study, the protein was expressed in E. coli in large scale and purified in high purity through His-binding affinity chromatography. The purified protein was simply added or incorporated into a base flour and conducted with a 2 g Mixograph in order to investigate the functional properties including mixing time (MT), peak dough resistance (PR) and breakdown in resistance (RBD). Both 10 mg and 15 mg Avenin-like protein could cause significant increases in MT and PR, and decrease in RBD, compared to the control, when incorporated into dough. But the latter showed larger effect on functional properties. Size exclusion high-performance liquid chromatography (SE-HPLC) analysis confirmed that Avenin-like protein was chemically incorporated into polymeric subunits by intermolecular disulphide bonds.

Restricted access

The powdery mildew resistance gene Pm2 is effective in China. Bulked segregant analysis (BSA) was used to search for microsatellite markers linked to Pm2 . Twenty-one microsatellite primer pairs located on chromosome 5DS were screened; three polymorphic loci Xcfd81 -5DS, Xgwm190 -5DS, and Xcfd18 -5DS were linked to Pm2 using an F 2 population from Chinese Spring × C114118 (with Pm2 ) consisting of 814 individuals. The genetic distances between Pm2 and the three markers were: 2.0cM, 34.2cM and 44.2cM, respectively. Microsatellite marker Xcfd81 -5DS could be used in marker assisted selection for Pm2 provided any chosen Pm2 source also carries the relevant marker.

Restricted access

This study was conducted to compare structural development and biochemical accumulation of waxy and non-waxy wheat (NW) caryopses. The caryopses’ microstructure of the waxy wheat (WW) and NW cultivars at different developmental stages were observed under light, fluorescence, and scanning electron microscope. The results were as follows: Compared with NW,WWhad a shorter maturation duration, which was reflected in several following characteristics. Programmed cell death of the pericarp began earlier, and the chlorophyll-containing layer in the pericarp was smaller. Vacuoles in chalazal cells accumulated more tannins at different developmental stages. Starch granules and protein bodies in the endosperm showed a higher accumulation level in developing caryopses, and aleurone cells were larger in size with larger numbers of aleurone grains. An analysis of the element content indicated that the mineral elements Mg, P, K, and Ca exhibited a higher content, while the heavy elements Cr, Cd, and Pb exhibited a lower content in the aleurone layer.

Restricted access