Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: T. Jiang x
  • Biology and Life Sciences x
  • All content x
Clear All Modify Search

High molecular weight (HMW) glutenin subunits are important seed storage proteins in wheat and its related species. Novel HMWglutenin subunits in Aegilops tauschii accession of TA2484 were detected and characterized. SDS-PAGE analysis revealed the y-type subunit from TA2484 displayed similar electrophoretic mobility compared to that of 1Dy12 subunit. However, the electrophoretic mobility of x-type subunit was faster than that of 1Dx2 subunit. The primary structure of the two cloned subunits from TA2484 was similar to that of the x- and y-type subunits reported before. However, the 148 residues of the x-type subunit, which contained the sequence element GHCPTSLQQ, in the middle of the repetitive domain was quite different from other x-type subunits. Moreover, the 68 residues in this region were identical to those of the y-type subunits from the same accession. Consequently, 1Dx2.3*t (x-type subunit of TA2484) contains an extra cystenin residue located at the repetitive domain, which is novel compared to the x-type subunits reported so far. Phylogenetic analysis indicated that two subunits from accession TA2484 were in the x- and y-type subunit cluster, but bootstrapping value of 100% gave high support for the spilt between two subunits (1Dx2.3*t and 1Dy12.3*t) and their alleles, respectively. A hypothesis on the genetic mechanism generating this novel sequence of 1Dx2.3*t subunit is suggested.

Restricted access
Cereal Research Communications
Authors: W.T. Xue, A. Gianinetti, R. Wang, Z.J. Zhan, J. Yan, Y. Jiang, T. Fahima, G. Zhao, and J.P. Cheng

Crop seeds are the main staples in human diet, especially in undeveloped countries. In any case, the diet needs to be rich not only in macro-nutrients like carbohydrates and protein, but also in micro-nutrients. Nevertheless, both the macro- and micro-nutrients presented in seeds largely vary in consequence of field and environment conditions. In this research, 60 lines of a barley RILs population segregating for the SSR marker Hvm74, which is genetically linked to the GPC (grain protein content) locus (HvNAM-1), were studied in 4 environments (two growing years and two field managements) by carrying out a comprehensive profile of seed macro- (starch, total nitrogen and total soluble protein) and micro-nutrients (phytate, phenolics, flavonoids, Pi, Zn and Fe). Under field conditions, all the components were largely affected by the environment, but TN (total nitrogen) exhibited high genotype contribution, while micro-nutrients displayed higher genotype × environments interactions (GEI) than macro-nutrients. In order to approach the effects of carbon-nitrogen (C–N) balance on other seed components, two C/N ratios were calculated: C/TN (CNR1) and C/TSP (CNR2). CNR2 exhibited stronger negative correlations with all micro-nutrients. Hence, the significant GEI and its negative relationships with CNR2 highlighted the different characters of micro-nutrients in barley seeds.

Open access
Cereal Research Communications
Authors: S. Wang, D. Chen, G. Guo, T. Zhang, S. Jiang, X. Shen, D. Perovic, S. Prodanovic, and Y. Yan

In this work, 9 novel LMW-GS genes (6 LMW-m and 3 LMW-i type) from 4 diploid and 1 tetraploid Aegilops species were amplified and cloned by allelic-specific PCR. Analysis of the deduced amino acid sequences showed that 7 and 2 LMW-GS had 9 and 7 cysteines, respectively. Four LMW-m type subunits genes had an extra cysteine at the C-terminal III, which could form intermolecular disulphide bonds to extend the chains, and therefore would facilitate to form larger gluten polymers. This suggested that these genes are expected to be used as candidate genes for wheat quality improvement. The correlation between specific N-terminal sequences and a decapeptide deletion in the C-terminal II in LMW-GS encoded by D genome was found. Particularly, if LMW-GS possessed a METRCIPG-N-terminal beginning sequences and a decapeptide (LGQCSFQQPQ) deletion in the C-terminal II, they could be encoded by D genome.

Restricted access

To study the development of starch granules in polyploid wheats, we investigated the expression of starch synthetic genes between the synthetic hexaploid wheat SHW-L1, its parents T. turgidum AS2255 and diploid Ae. tauschii AS60. The synthetic hexaploid wheat SHW-L1 showed significantly higher starch content and grain weight than its parents. Scanning electron microscopy (SEM) showed that SHW-L1 rapidly developed starch granules than AS2255 and AS60. The amount of B-type granule in AS60 was less than that in SHW-L1 and AS2255. RT-qPCR result showed that the starch synthetic genes AGPLSU1, AGPLSU2, AGPSSU1, AGPSSU2, GBSSI, SSIII, PHO1 and PHO2 expressed at earlier stages with larger quantity in SHW-L1 than in its parents during wheat grain development. The expression of the above mentioned genes in AS60 was slower than in SHW-L1 and AS2255. The expression pattern of starch synthase genes was also associated with the grain weight and starch content in all three genotypes. The results suggested that the synthetic hexaploid wheat inherited the pattern of starch granule development and starch synthase gene expression from tetraploid parent. The results suggest that tetraploid wheat could plays more important role for starch quality improvement in hexaploid wheat.

Restricted access

Aegilops sharonensis (Sharon goatgrass) is a valuable source of novel high molecular weight glutenin subunits, resistance to wheat rust, powdery mildew, and insect pests. In this study, we successfully hybridized Ae. sharonensis as the pollen parent to common wheat and obtained backcross derivatives. F1 intergeneric hybrids were verified using morphological observation and cytological and molecular analyses. The phenotypes of the hybrid plants were intermediate between Ae. sharonensis and common wheat. Observations of mitosis in root tip cells and meiosis in pollen mother cells revealed that the F1 hybrids possessed 28 chromosomes. Chromosome pairing at metaphase I of the pollen mother cells in the F1 hybrid plants was low, and the meiotic configuration was 25.94 I + 1.03 II (rod). Two pairs of primers were screened out from 150 simple sequence repeat markers, and primer WMC634 was used to identified the presence of the genome of Ae. sharonensis. Sequencing results showed that the F1 hybrids contained the Ssh genome of Ae. sharonensis. The sodium dodecyl sulfate polyacrylamide gel electrophoresis profile showed that the alien high molecular weight glutenin subunits of Ae. sharonensis were transferred into the F1 and backcross derivatives. The new wheat-Ae. sharonensis derivatives that we have produced will be valuable for increasing resistance to various diseases of wheat and for improving the quality of bread wheat.

Restricted access