Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: T. Yunoki x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All Modify Search
Journal of Radioanalytical and Nuclear Chemistry
Authors: E. Yunoki, T. Kataoka, K. Michihiro, H. Sugiyama, M. Shimizu, and T. Mori

Abstract  

The distribution of226Ra and238U in various soils has been studied. Supposing that radioactive equilibrium were in existence, the average activities of226Ra and238U would show a nearly 11 correlation. As weathering affects radioactive equilibrium in surface soil, radioactive equilibrium was not in existence. Therefore, four kinds of soil were selected from different weathering conditions, viz. river bed soil, paddy field soil, field soil and uncropped soil. The226Ra/238U ratio of various soils lies in the range of 1.63 to 2.41. The activity concentrations of226Ra were greater than238U in various soils. The ratio226Ra/238U can be shown to be a quantitative index of weathering. Phosphatic manure contains238U and its daughter isotopes in concentrations far exceeding the average abundance in the earth's crust. But the cultivated soils (paddy field soil, field soil) are not affected by fertilizers in Kamisaibara.

Restricted access

Abstract  

Distributions of238U and226Ra in agricultural samples and cultivated soils have been studied over ten years. The crops are rice, spinach and Chinese cabbage. Two investigated areas have been selected (35° 18 N, 113° 35 E). The agricultural samples and soils were collected annually from May 1982 through October 1991. The activity concentrations of226Ra in agricultural samples are greater than those of238U. The transfer factors of238U,226Ra are from 0.06·10–3 to 1.2·10–3. The226Ra/238U ratios for three agricultural samples have their characteristic values.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: E. Yunoki, T. Kataoka, K. Michihiro, H. Sugiyama, M. Shimizu, and T. Mori

Abstract  

The238U and226Ra contents of small-volume aerosols are determined by a chemical analysis technique. Mean activity concentrations of238U and226Ra in aerosols over approximately ten years are 0.29·10–5 and 0.93·10–5 Bq/m3, respectively. The yearly variation of238U and226Ra in aerosols is small. The concentrations of226Ra are always larger than those of238U in the same sampling time. The correlation of238U and226Ra cannot be recogonized (r=0.18). The concentrations of summer samples are greater than those of winter samples for238U. One of the causes of seasonal difference may be due to the fact that the components of aerosols are different according to soil size, soil components, weathering states, etc.

Restricted access