Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: X. Zhu x
  • Biology and Life Sciences x
  • All content x
Clear All Modify Search

Seed germination is a new beginning for the crop life cycle, which is closely related to seed sprouting and subsequent plant growth and development, and ultimately affects grain yield and quality. Salt stress is one of the most important abiotic stress factors that restrict crop production. Therefore, it is highly important to improve crop salt tolerance and sufficient utilization of saline-alkali land. In this study, we identified the phosphorylated proteins involved in salt stress response by combining SEM, 2-DE, Pro-Q Diamond staining and tandem mass spectrometry. The results showed that salt stress significantly inhibited seed germination and starch degradation. In total, 14 phosphorylated protein spots (11 unique proteins) in the embryo and 6 phosphorylated protein spots (4 unique proteins) in the endosperm were identified, which mainly involved in stress/defense, protein metabolism and energy metabolism. The phosphorylation of some proteins such as cold regulated proteins, 27K protein, EF-1β and superoxide dismutase could play important roles in salt stress tolerance.

Restricted access

The aim of this study was to investigate the effects of maternal lead exposure on the learning and memory ability and expression of tau protein phosphorylation (P-tau) and beta amyloid protein (Aβ) in hippocampus of mice offspring. Pb exposure initiated from beginning of gestation to weaning. Pb acetate administered in drinking solutions was dissolved in distilled deionized water at the concentrations of 0.1%, 0.5% and 1% groups. On the 21 th of postnatal day, the learning and memory ability of the mouse pups was tested by Water Maze test and the Pb levels in blood and hippocampus of the offspring were also determined. The expression of P-tau and Aβ in hippocampus was measured by immunohistochemistry and Western blotting. The Pb levels in blood and hippocampus of all exposure groups were significantly higher than that of the control group ( P < 0.05). In Water Maze test, the performances of 0.5% and 1% groups were worse than that of the control group ( P < 0.05). The expression of P-tau and Aβ was increased in Pb exposed groups than that of the control group ( P < 0.05). Tau hyper-phosphorylation and Aβ increase in the hippocampus of pups may contribute to the impairment of learning and memory associated with maternal Pb exposure.

Restricted access
Cereal Research Communications
Authors: N. Niu, Y.X. Bai, S. Liu, Q.D. Zhu, Y.L. Song, S.C. Ma, L.J. Ma, X.L. Wang, G.S. Zhang, and J.W. Wang

Studies of the pollen abortion mechanism in thermo-sensitive male sterile lines may provide a strong foundation for breeding hybrid wheat and establishing a theoretical basis for marker-assisted selection. To investigate the cause of pollen abortion in Bainong thermo – sensitive male sterile (BNS) lines, we analyzed the properties of pollen grains, changes in the tapetum and microspores in different anther developmental stages, and the distribution and deposition of nutrient substances in microspores. We found that tapetum degraded in the early uninucleate stage in sterile BNS (S-BNS), which was earlier than that of fertile BNS (F-BNS) tapetum. Large amounts of insoluble polysaccharides, lipids, and proteins were deposited until the trinucleate pollen stage in the nutritive cells in F-BNS. At the binucleate stage, the vacuoles disappeared and pollen inclusion increased gradually. At the trinucleate stage, these nutrients would help pollen grains mature and participate in fertilization normally. Therefore, early degradation of the tapetum, which inhibits normal microspore development, and the limited content of nutrient substances in pollen may be the main factors responsible for male sterility in BNS lines.

Restricted access

In this study, a new substitution line, 12-5-1, with 42 chromosomes that was derived from BC3F2 descendants of the hybridization between Triticum aestivum cv. CN19 and Aegilops biuncialis was created and reported. The 12-5-1 was immune to both powdery mildew and stripe rust and has stable fertility. Multi-color fluorescence in situ hybridization indicated that 12-5-1 was a substitution line 1Mb(1B). The seed storage protein electrophoresis showed that 12-5-1 presented high molecular weight glutenin subunits (2 + 12) of CN19 and a new subunit designated as M which apparently originated from parent Ae. biuncialis, and absent 7 + 8 subunits. Additionally, the flour quality parameters showed that the protein content, Zeleny sedimentation value, wet gluten content, and grain hardness and mixing time of 12-5-1 were signifiantly higher than those of its parent CN19. Moreover, 5 pairs of the chromosome 1Mb-specifi polymerase chain reaction-based landmark unique gene markers, TNAC1021, TNAC1026, TNAC1041, TNAC1-02 and TNAC1-04, were also obtained. The new substitution line 1Mb(1B) 12-5-1 could be a valuable source for wheat improvement, especially for wheat end product quality and resistance to disease.

Restricted access