Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: X.-C. Lv x
  • Chemistry and Chemical Engineering x
  • All content x
Clear All Modify Search

Abstract

A complex of Erbium perchloric acid coordinated with l-aspartic acid and imidazole, Er2(Asp)2(Im)8(ClO4)6·10H2O was synthesized for the first time. It was characterized by IR and elements analysis. The heat capacity and thermodynamic properties of the complex were studied with an adiabatic calorimeter (AC) from 80 to 390 K and differential scanning calorimetry (DSC) from 100 to 300 K. Glass transition and phase transition were discovered at 220.45 and 246.15 K, respectively. The glass transition was interpreted as a freezing-in phenomenon of the reorientational motion of ClO4− ions and the phase transition was attributed to the orientational order/disorder process of ClO4− ions. The thermodynamic functions [H TH 298.15] and [S TS 298.15] were derived in the temperature range from 80 to 390 K with temperature interval of 5 K. Thermal decomposition behavior of the complex in nitrogen atmosphere was studied by thermogravimetric (TG) analysis and differential scanning calorimetry (DSC).

Restricted access

Summary

Radix Isatidis has widely useful activities including anti-virus, anti-bacterial. Tryptanthrin, indigo, and indirubin are active ingredients in R. Isatidis. Response surface methodology (RSM)-optimized infrared-assisted extraction (IRAE) was developed and combined with HPLC for simultaneous determination of tryptanthrin, indigo, and indirubin from R. Isatidis. IRAE were investigated through extraction yields of the three components and optimized by RSM. The optimum conditions were as follows: infrared power of 129 W, solid/liquid ratio of 1:40 g/mL, and irradiation time of 22.5 min. IRAE conditions obtained by RSM were not only accurate, but also had practical value reflecting the expected optimization. Subsequently, this novel IRAE method was evaluated by extraction yield of the components of R. Isatidis samples from different regions. Compared with common extraction methods including maceration extraction (ME), reflux extraction (RE), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), IRAE showed higher yield with advantages of no limitation of solvent selection, low cost, convenience under optimum extraction conditions. These results suggested the potential of RSM-optimized IRAE for extraction and analysis of the water-/fat-soluble compositions of Chinese herbal medicine. A simple chromatographic separation for simultaneous determination of tryptanthrin, indigo, and indirubin from Chinese herbal medicine R. Isatidis was performed on a C18 column (Diamonsil 150 mm × 4.6 mm i.d., 5 μm) with a mobile phase isocratic consisting of methanol and water at a flow-rate of 0.8 mL min−1. The retention times of tryptanthrin, indigo, and indirubin were 15.4, 31.9, and 58.6 min, respectively. The linear equations were obtained as follows: y = −3094.5744 + 21208.792x for tryptanthrin (R = 0.9998, 0.9–18.0 μg mL−1), y = 4730.0448 + 30180.567x for indigo (R = 0.9997, 0.5–10.0 μg mL−1) and y = −6582.9045 + 67069.312x for indirubin (R = 0.9997, 0.4–8.0 μg mL−1). The result showed that RSM-optimized IRAE was a simple, efficient pretreatment method for the analysis of complex matrix.

Full access
Journal of Thermal Analysis and Calorimetry
Authors: X.-C. Lv, Z.-C. Tan, Z.-A. Li, Y.-S. Li, J. Xing, Q. Shi, and L.-X. Sun

Abstract  

The (R)-BINOL-menthyl dicarbonates, one of the most important compounds in catalytic asymmetric synthesis, was synthesized by a convenient method. The molar heat capacities C p,m of the compound were measured over the temperature range from 80 to 378 K with a small sample automated adiabatic calorimeter. Thermodynamic functions [H TH 298.15] and [S TS 298.15] were derived in the above temperature range with a temperature interval of 5 K. The thermal stability of the substance was investigated by differential scanning calorimeter (DSC) and a thermogravimetric (TG) technique.

Restricted access