Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: X.B. Lv x
  • Chemistry and Chemical Engineering x
  • All content x
Clear All Modify Search

Abstract  

The molar heat capacities C p,m of 2,2-dimethyl-1,3-propanediol were measured in the temperature range from 78 to 410 K by means of a small sample automated adiabatic calorimeter. A solid-solid and a solid-liquid phase transitions were found at T-314.304 and 402.402 K, respectively, from the experimental C p-T curve. The molar enthalpies and entropies of these transitions were determined to be 14.78 kJ mol−1, 47.01 J K−1 mol for the solid-solid transition and 7.518 kJ mol−1, 18.68 J K−1 mol−1 for the solid-liquid transition, respectively. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 310 K, C p,m/(J K−1 mol−1)=117.72+58.8022x+3.0964x 2+6.87363x 3−13.922x 4+9.8889x 5+16.195x 6; x=[(T/K)−195]/115. In the temperature range of 325 to 395 K, C p,m/(J K−1 mol−1)=290.74+22.767x−0.6247x 2−0.8716x 3−4.0159x 4−0.2878x 5+1.7244x 6; x=[(T/K)−360]/35. The thermodynamic functions H TH 298.15 and S TS 298.15, were derived from the heat capacity data in the temperature range of 80 to 410 K with an interval of 5 K. The thermostability of the compound was further tested by DSC and TG measurements. The results were in agreement with those obtained by adiabatic calorimetry.

Restricted access

Abstract  

The molar heat capacity, Cp,m, of a complex of holmium chloride coordinated with L-aspartic acid, Ho(Asp)Cl2·6H2O, was measured from 80 to 397 K with an automated adiabatic calorimeter. The thermodynamic functions HT-H298.15 and ST-S298.15 were derived from 80 to 395 K with temperature interval of 5 K. The thermal stability of the complex was investigated by differential scanning calorimeter (DSC) and thermogravimetric (TG) technique, and the mechanism of thermal decomposing of the complex was determined based on the structure and the thermal analysis experiment.

Restricted access