Search Results

You are looking at 1 - 10 of 16 items for :

  • Author or Editor: Y. Yu x
  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

Artificial grassland plots with various degrees of diversity were established near Heishiding Nature Reserve, Guangdong Province, China. After an establishment phase of one year, one half of each plot was exposed to drought stress in order to explore the relationship between diversity and compositional stability of the grassland communities. The experiment showed that relationships between diversity and compositional stability varied with the diversity values in non-stressed control subplots and the duration of drought disturbance. When control subplots had higher evenness, species richness negatively affected compositional stability, which led to a negative relationship between diversity and compositional stability. When control subplots had lower evenness, compositional stability was determined by evenness or species identity (particular species) at different periods of drought disturbance. This resulted in negative, weakly positive or no relationships between diversity and compositional stability. Based on these results, we suggest that different relationships between diversity and compositional stability, and controversial data from such relationships in previous studies may reflect differences in environmental and experimental conditions.

Restricted access

Recruitment limitation has been hypothesized to promote the maintenance of high species diversity in forests by slowing down competitive exclusion. However, the difference of recruitment limitation for tree species with varying seed masses, which is a common phenomenon in tropical or subtropical forests, is largely unknown. In this study we conducted a seed sowing experiment for five dominant tree species with varying seed mass (a proxy of dispersal ability) in a subtropical evergreen broad-leaved forest at different successional stages to test the hypothesis that the determinants of species recruitment vary with their seed masses in Heishiding Nature Reserve (Guangdong Province, China). The effects of seed predators, soil pathogens, light conditions, plant litter, seed additions, and the presence of adult conspecific trees on the performance of seeds and seedlings for the five species were examined. We particularly investigated the effects of habitat hazards and seed size on the relative importance of dispersal limitation and establishment limitation. The results show that all five sowing species experienced recruitment limitation at the microsite level, although the causes of the limitation of these species varied between pathogen infection, animal predation, litter covering and shading. Seedling recruitment of the wind-dispersed, small-seeded species was mostly limited by microsite condition, while large-seeded species were mostly limited by dispersal ability.

Restricted access

Changes in microbial population, pH, sugar, organic acid, anthocyanins, total soluble phenolics, and anti-glucosidase contents were measured during fermentation of mulberry juice at 30 °C by probiotic Leuconostoc mesenteroides showing rapid growth after an approximately 1-day lag phase and reaching a maximum of 8.6 log CFU ml−1 after 4 d. During the rapid growth phase, the main mulberry juice sugars, glucose and fructose, were largely consumed, and the acidic metabolites, lactic acid and acetic acid, were produced accordingly. A slow decrease in the concentration of the main organic acid, citric acid, was also observed during fermentation. After 4 d fermentation, anthocyanin content showed a 44.4% reduction, but the total amount of soluble phenolics and α-glucosidase inhibitory activity showed no significant changes (P>0.05). This suggests that L. mesenteroides fermentation of mulberry juice is a good strategy to enhance its probiotic value and to decrease the sugar content without changing the anti-glucosidase activity, which is required to reduce postprandial rise in blood glucose.

Restricted access

Different sampling strategies are simulated by changing quadrat size, quadrat shape, sample size and the arrangement of quadrats in a tropical rain forest of Hainan (South China). The simulation uses enumeration data of trees, and derived variables such as species richness, species importance, and species population density, to compare the efficiency of the sampling. The results verify that greater sampling efficiency is to be expected using systematic sampling than random sampling. Quadrat size has substantial influence on parameter estimation, but quadrat shape has negligible effect except when the quadrat is extremely long and narrow.

Restricted access
Cereal Research Communications
Authors: H. Yu, Y. Yang, X.Y. Chen, G.X. Lin, J.Y. Sheng, J.Y. Nie, Q.J. Wang, E.J. Zhang, X.R. Yu, Z. Wang, and F. Xiong

The waxy wheat shows special starch quality due to high amylopectin content. However, little information is available concerning the development and degradation of amyloplast from waxy wheat endosperm. To address this problem, waxy wheat variety, Yangnuo 1, and a non-waxy wheat variety, Yangmai 13, were chosen to investigate the development and degradation of endosperm amyloplast during wheat caryopsis development and germination stage respectively using histochemical staining and light microscopy. Changes of morphology, the soluble sugar and total starch content were indistinguishable in the process of caryopsis development of two wheat varieties. The developing endosperm of non-waxy was stained blue-black by I2-KI while the endosperm of waxy wheat was stained reddish-brown, but the pericarp of waxy and non-waxy wheat was stained blue-black. In contrast to nonwaxy wheat, endosperm amyloplast of waxy wheat had better development status and higher proportion of small amyloplast. During seed germination many small dissolution pores appeared on the surface of endosperm amyloplast and the pores became bigger and deeper until amyloplast disintegrated. The rate of degradation of waxy wheat endosperm amyloplast was faster than non-waxy wheat. Our results may also be helpful to the use of waxy starch in food and nonfood industry.

Restricted access

Chinese endemic wheat landraces possess unique morphological features and desirable traits, useful for wheat breeding. It is important to clarify the relationship among these landraces. In this study, 21 accessions of the four Chinese endemic wheat landrace species were investigated using single-copy genes encoding plastid Acetyl-CoA carboxylase (Acc-1) and 3-phosphoglycerate kinase (Pgk-1) in order to estimate their phylogenetic relationship. Phylogenetic trees were constructed using maximum parsimony (MP), maximum likelihood (ML) and Bayesian, and TCS network and gene flow values. The A and B genome sequences from the Pgk-1 loci indicated that three accessions of Triticum petropavlovskyi were clustered into the same subclade, and the T. aestivum ssp. tibetanum and the Sichuan white wheat accessions were grouped into a separate subclade. Based on the Acc-1 gene, T. aestivum ssp. tibetanum and T. aestivum ssp. yunnanense were grouped into one subclade in the A genome; the B genome from T. petropavlovskyi and T. aestivum ssp. tibetanum, and the Sichuan white wheat complex and T. aestivum ssp. tibetanum were grouped in the same clades. The D genome of T. aestivum ssp. yunnanense clustered with T. petropavlovskyi. Our findings suggested that (1) T. petropavlovskyi is distantly related to the Sichuan white wheat complex; (2) T. petropavlovskyi, T. aestivum ssp. tibetanum and T. aestivum ssp. yunnanense are closely related; (3) T. aestivum ssp. tibetanum is closely related to T. aestivum ssp. yunnanense and the Sichuan white wheat complex; and (4) T. aestivum ssp. tibetanum may be an ancestor of Chinese endemic wheat landraces.

Restricted access

Prorocentrum donghaiense caused large-scale red tides off Chinese coast in recent years. Expressed sequence tag (EST) analysis was carried out for this dinoflagellate in order to identify the genes involved in its proliferation and death. A cDNA library was constructed for P. donghaiense at late exponential growth phase, and 308 groups of EST were generated, which include 36 contigs and 272 singletons. Among 22 groups showed homologies with known genes, 2 matched significantly with caspase and proliferating cell nuclear antigen. Caspase and proliferating cell nuclear antigen are 2 key proteins involved in programmed cell death. Their identification evidenced preliminarily the induction of PCD in aging P. donghaiense. The identified included also calmodulin and protein phosphatase, two proteins involved in diverse cell processes including PCD by binding to or modifying others.

Restricted access

Abstract

In this paper, we studied the inhibitory effect of oleanolic acid (OA) on non-enzymatic glycosylation and the improvement of glycometabolism in insulin resistant (IR) human liver tumour (HepG2) cells. The anti-glycosylation activity of OA was determined by bovine serum albumin (BSA) fructose model. The results showed that OA moderately inhibited the formation of the intermediates of non-enzymatic glycosylation, fructosamine and α-dicarbonyl compounds, and strongly inhibited the formation of advanced glycation end products (AGEs). In addition, we analysed the effect of OA on glycometabolism induced by palmitic acid (PA) in HepG2 cells. The results showed that OA had almost no impact on HepG2 cell viability at concentrations lower than 30 µM. With the increase of OA concentration, glucose production in IR HepG2 cells decreased, while glycogen content increased. Meanwhile, OA has a significant inhibitory effect on reactive oxygen species (ROS) levels in IR-HepG2 cells. Those results suggested that OA could be a promising natural blood glucose decreasing substance in the pharmaceutical and functional food industries.

Restricted access
Cereal Research Communications
Authors: Y.P. Jing, D.T. Liu, X.R. Yu, F. Xiong, D.L. Li, Y.K. Zheng, Y.F. Hao, Y.J. Gu, and Z. Wang

The objective of the present study was to understand the developmental regularity of wheat endosperm cells at different Days After Pollination (DAP) using microscopic and histochemical methods. Resin semi-thin sections of the endosperm and the enzymatically dissociated Starchy Endosperm Cells (SECs) were observed under a light microscope. The results showed that: (1) SECs were irregular-shaped and had two types of starch granules: large oval-shaped A-type starch granules and small spherical B-type starch granules. (2) The growth shape of SECs was referred to as S-curve and the fastest cell growth period was at 16–24 DAP. (3) The largest increase and growth of A-type starch granules were mainly at 4–16 DAP. B-type starch granules increased rapidly after 16 DAP and made up over 90% of the total starch granules in SEC during the late stage of endosperm development. (4) The nuclei of SEC deformed and degenerated during the middle and late stages of endosperm development and eventually disappeared. However, starch granules still increased and grew after the cell nuclei had degenerated. The investigations showed the development regularity of starch endosperm cells and starch granules, thereby improving the understanding of wheat endosperm development.

Restricted access

This study was conducted to compare structural development and biochemical accumulation of waxy and non-waxy wheat (NW) caryopses. The caryopses’ microstructure of the waxy wheat (WW) and NW cultivars at different developmental stages were observed under light, fluorescence, and scanning electron microscope. The results were as follows: Compared with NW,WWhad a shorter maturation duration, which was reflected in several following characteristics. Programmed cell death of the pericarp began earlier, and the chlorophyll-containing layer in the pericarp was smaller. Vacuoles in chalazal cells accumulated more tannins at different developmental stages. Starch granules and protein bodies in the endosperm showed a higher accumulation level in developing caryopses, and aleurone cells were larger in size with larger numbers of aleurone grains. An analysis of the element content indicated that the mineral elements Mg, P, K, and Ca exhibited a higher content, while the heavy elements Cr, Cd, and Pb exhibited a lower content in the aleurone layer.

Restricted access