Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Y.J. Deng x
  • Biology and Life Sciences x
  • All content x
Clear All Modify Search

The dwarf-male-sterile wheat is unique to China and has been improved by introducing good germplasm. In order to clear the subunits background of Dwarf-Male-Sterile wheat, sodium dodecyl sulphate polyacrylamide-gel electrophoresis (SDS-PAGE) was used to detect the high and low molecular weight glutenin subunits (HMW-GS and LMW-GS) compositions in BC1F1, F2 and F3 generations from Dwarf-Male-Sterile wheat. Twenty-five alleles and 49 HMW-GS compositions at the Glu-1 loci were detected in different generations. Null and subunit 1 were mainly existed at Glu-A1 , and 7 + 8 and 7 + 9 were primarily detected at Glu-B1 in different generations. Subunit combination 5 + 10 mainly appeared in BC1F1, while 2 + 12 major presented in F2 and F3 generations. HMW-GS compositions null, 7 + 8, 5 + 10 and null, 7 + 9, 5 + 10 showed higher frequencies than other banding patterns, followed by null, 14 + 15, 5 + 10 and null, 7 + 9, 2 + 12 combinations. In addition, some rare subunit combinations such as 14 + 15, 13 + 16, 17 + 18, 4 + 12, 2 + 10 and 5 + 12 were found in different generations. Eighteen alleles and 51 LMW-GS compositions at Glu-3 loci were found in different generations. Glu-A3 a and Glu-B3 d showed higher frequencies than others among three generations. There were mainly a, b, c alleles at Glu-D3 . Thirty, 31 and 14 different combinations were detected in BC1F1, F2 and F3 populations, respectively. There were some good combinations such as A3 d/ B3 h, A3 d/ B3 d/ D3 a, A3 b/ B3 b/ D3 a, A3 a/ B3 d/ D3 a for different quality characteristics. So some desirable subunit combinations could be selected from different generations and new cultivars with good quality under distinct subunits background should be bred from Dwarf-Male-Sterile wheat in future.

Restricted access

Two hundred and ninety F9 recombinant inbred lines (RILs) derived from the bread wheat cultivar Gaocheng 8901 and the waxy wheat cultivar Nuomai 1 were used in determining the high-molecular-weight glutenin subunit (HMW-GS) and waxy protein subunit combinations and their effects on the dough quality and texture profile analysis (TPA) of cooked Chinese noodles. Seven alleles were detected at Glu-1 loci. There were two alleles found at each of the Wx-A1, Wx-B1 and Wx-D1 loci. Eight allelic combinations were observed for HMW-GS, LMW-GS and waxy proteins, respectively. Both the 1/7+8/5+10 and 1/7+8/5+12 combinations contributed to dough elasticity, and the 1/7+8/5+10 combination also provided better TPA characteristics. Compared to Wx protein, HMW-GS was more important on dough alveogram properties. LMW-GS significantly affected springiness and cohesiveness; HMW-GS mainly affected the hardness; Wx×LMW-GS significantly affected the springiness, cohesiveness and chewiness; HMW-GS×Wx×LMW-GS mainly influenced the springiness and chewiness. But HMW-GS×LMW-GS only affected the spinginess. These indicated the TPA of noodles was significantly affected by the interactions between glutenin and Wx proteins.

Restricted access

It is well demonstrated that wheat-rye 1BL/1RS translocated chromosome leads to some valuable novel traits such as disease resistance, high yield and functional stay-green after anthesis. To understand the physiological mechanism of 1BL/1RS translocation responsible for osmotic stress, two wheat cultivars, CN12 and CN17, carrying the translocated chromosome and MY11 without the translocated chromosome were employed in the study. During 5-day osmotic stress, fresh weight inhibition, chlorophyll content, soluble protein content, MDA concentration, antioxidant enzymes activity and free polyamines content were examined. CN12 and CN17, especially cultivar CN17, registered greater biomass and minor oxidative damage compared with their wheat parent. Meanwhile, the concentration of Spd and Spm in CN17 was significantly higher than the others. In addition, we found a positive correlation of fresh weight inhibition (FWI) and Put concentration, and a negative one with the parameters (Spd + Spm): Put ratio, indicating the importance of higher polyamine (Spd and Spm) accumulation on the adaptation to osmotic stress. Therefore, we proposed that the accumulation of higher polyamines (Spd and Spm) should play an important role on the adaptation of 1BL/1RS translocation lines to osmotic stress and might be important factors for the origin of novel traits introduced by 1BL/1RS.

Restricted access

In this study, a new substitution line, 12-5-1, with 42 chromosomes that was derived from BC3F2 descendants of the hybridization between Triticum aestivum cv. CN19 and Aegilops biuncialis was created and reported. The 12-5-1 was immune to both powdery mildew and stripe rust and has stable fertility. Multi-color fluorescence in situ hybridization indicated that 12-5-1 was a substitution line 1Mb(1B). The seed storage protein electrophoresis showed that 12-5-1 presented high molecular weight glutenin subunits (2 + 12) of CN19 and a new subunit designated as M which apparently originated from parent Ae. biuncialis, and absent 7 + 8 subunits. Additionally, the flour quality parameters showed that the protein content, Zeleny sedimentation value, wet gluten content, and grain hardness and mixing time of 12-5-1 were signifiantly higher than those of its parent CN19. Moreover, 5 pairs of the chromosome 1Mb-specifi polymerase chain reaction-based landmark unique gene markers, TNAC1021, TNAC1026, TNAC1041, TNAC1-02 and TNAC1-04, were also obtained. The new substitution line 1Mb(1B) 12-5-1 could be a valuable source for wheat improvement, especially for wheat end product quality and resistance to disease.

Restricted access