Search Results

You are looking at 1 - 10 of 35 items for :

  • Author or Editor: Z. L. Li x
  • Chemistry and Chemical Engineering x
  • All content x
Clear All Modify Search

Abstract  

Synthesis, characterization and thermal analysis of polyaniline (PANI)/ZrO2 composite and PANI was reported in our early work. In this present, the kinetic analysis of decomposition process for these two materials was performed under non-isothermal conditions. The activation energies were calculated through Friedman and Ozawa-Flynn-Wall methods, and the possible kinetic model functions have been estimated through the multiple linear regression method. The results show that the kinetic models for the decomposition process of PANI/ZrO2 composite and PANI are all D3, and the corresponding function is ƒ(α)=1.5(1−α)2/3[1−(1-α)1/3]−1. The correlated kinetic parameters are E a=112.7±9.2 kJ mol−1, lnA=13.9 and E a=81.8±5.6 kJ mol−1, lnA=8.8 for PANI/ZrO2 composite and PANI, respectively.

Restricted access

Thermodynamic investigation of room temperature ionic liquid

Heat capacity and thermodynamic functions of BMIBF4

Journal of Thermal Analysis and Calorimetry
Authors: Z. Zhang, Z. Tan, Y. Li, and L. Sun

Abstract  

The molar heat capacities of the room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature X by polynomial equations, C P,m (J K–1 mol–1)= 195.55+47.230 X–3.1533 X 2+4.0733 X 3+3.9126 X 4 [X=(T–125.5)/45.5] for the solid phase (80~171 K), and C P,m (J K–1 mol–1)= 378.62+43.929 X+16.456 X 2–4.6684 X 3–5.5876 X 4 [X=(T–285.5)/104.5] for the liquid phase (181~390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BMIBF4 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass translation of BMIBF4 was observed at 176.24 K. Using oxygen-bomb combustion calorimeter, the molar enthalpy of combustion of BMIBF4 was determined to be Δc H m o= – 5335±17 kJ mol–1. The standard molar enthalpy of formation of BMIBF4 was evaluated to be Δf H m o= –1221.8±4.0 kJ mol–1 at T=298.150±0.001 K.

Restricted access

Abstract  

Conducting polyaniline/Cobaltosic oxide (PANI/Co3O4) composites were synthesized for the first time, by in situ deposition technique in the presence of hydrochloric acid (HCl) as a dopant by adding the fine grade powder (an average particle size of approximately 80 nm) of Co3O4 into the polymerization reaction mixture of aniline. The composites obtained were characterized by infrared spectra (IR) and X-ray diffraction (XRD). The composition and the thermal stability of the composites were investigated by TG-DTG. The results suggest that the thermal stability of the composites is higher than that of the pure PANI. The improvement in the thermal stability for the composites is attributed to the interaction between PANI and nano-Co3O4.

Restricted access

Abstract  

The principle for the electro-generative simultaneous leaching (EGSL) is applied to simultaneous leaching of pyrite-MnO2 in this paper. A galvanic system for the bio-electro-generative simultaneous leaching (BEGSL) has been set up. The equation of electric quantity vs. time is used to study the effect of produced sulfur on electro-generative efficiency and quantity. It has been shown that the resistance decreased in the presence of Acidithiobacillus thiooxidans (A. thiooxidans) with the increase of electro-generative efficiency. The effects of temperature and grain size on rate of ferrous extraction from pyrite under the conditions of presence and absence of A. thiooxidans were studied, respectively. The changes in the extraction rate of Fe2+ as particle size in presence of A. thiooxidans were more evident than that in the absence, which indicated that the extraction in bio-electro-generative leaching was affected by particle size remarkably. Around the optimum culture temperature for A. thiooxidans, the bigger change in the conversion rate of Fe2+ was depending on temperature. The transferred charge in BEGSL including part of S0 to sulfate group in the presence of (A. thiooxidans) which is called as biologic electric quantity, and the ratio of biologic electric quantity reached to 58.10% in 72 h among the all-transferred charge.

Restricted access

Abstract  

The molar heat capacity C p,m of 1,2-cyclohexane dicarboxylic anhydride was measured in the temperature range from T=80 to 390 K with a small sample automated adiabatic calorimeter. The melting point T m, the molar enthalpy Δfus H m and the entropy Δfus S m of fusion for the compound were determined to be 303.80 K, 14.71 kJ mol−1 and 48.43 J K−1 mol−1, respectively. The thermodynamic functions [H T-H 273.15] and [S T-S 273.15] were derived in the temperature range from T=80 to 385 K with temperature interval of 5 K. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetry (TG), when the process of the mass-loss was due to the evaporation, instead of its thermal decomposition.

Restricted access

Abstract

The enthalpies of mixing of six kinds of amino acid (glycine, L-alanine, L-valine, L-serine, L-threonine, and L-proline) with glycerol in aqueous solutions and the enthalpies of diluting of amino acid and glycerol aqueous solutions have been determined by flow microcalorimetry at 298.15 K. Employing McMillan–Mayer theory, the enthalpies of mixing and diluting have been used to calculate heterogeneous enthalpic pairwise interaction coefficients (h xy) between amino acids and glycerol in aqueous solutions. Combining h xy values of amino acids with glycol in the previous study, the variations of the h xy values between amino acids and glycerol have been interpreted from the point of view of solute–solute interactions.

Restricted access

Abstract  

After an acute exposure to lanthanum chloride, the pharmacokinetics of calcium uptake in rats was studied by radioactive 47Ca tracer. The accumulated doses of calcium in the left femurs during 24 hours were determined. The results showed that the area under the curves (AUC), specific activity of maximal blood 47Ca concentration (C max), distribution rate constant (K a) and the accumulated dose of calcium in the left femur decreased while time to C max (T peak) increased with the rising dosage of lanthanum exposure. It indicated that lanthanum expose had a negative effect on calcium absorption.

Restricted access

Abstract  

The power–time curves of micellar formation of two anionic surfactants, sodium laurate (SLA) and sodium dodecyl sulfate (SDS), in N,N-dimethyl acetamide (DMA) in the presence of various long-chain alcohols (1-heptanol, 1-octanol, 1-nonanol and 1-decanol) were measured by titration microcalorimetry at 298 K. The critical micelle concentrations (CMCs) of SLA and SDS under various conditions at 298 K were obtained based on the power–time curves. Thermodynamic parameters (

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta H^\circ_{\text{mic}}$$ \end{document}
,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta S^\circ_{\text{mic}}$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta G^\circ_{\text{mic}}$$ \end{document}
) for micellar systems at 298 K were evaluated according to the power–time curves and the mass action model. The influences of the number of carbon-atom and the concentration of alcohol were investigated. Moreover, combined the thermodynamic parameters at 303, 308 and 313 K in our previous work and those of 298 K in the present work for SLA and SDS in DMA in the presence of long-chain alcohols, an enthalpy–entropy compensation effect was observed. The values of the enthalpy of micellization calculated by direct and indirect methods were made a comparison.

Restricted access
Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Y. Y. Di, Z. C. Tan, L. W. Li, S. L. Gao, and L. X. Sun

Abstract

Low-temperature heat capacities of a solid complex Zn(Val)SO4·H2O(s) were measured by a precision automated adiabatic calorimeter over the temperature range between 78 and 373 K. The initial dehydration temperature of the coordination compound was determined to be, T D=327.05 K, by analysis of the heat-capacity curve. The experimental values of molar heat capacities were fitted to a polynomial equation of heat capacities (C p,m) with the reduced temperatures (x), [x=f (T)], by least square method. The polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of the complex relative to the standard reference temperature 298.15 K were given with the interval of 5 K.

Enthalpies of dissolution of the [ZnSO4·7H2O(s)+Val(s)] (Δsol H m,l 0) and the Zn(Val)SO4·H2O(s) (Δsol H m,2 0) in 100.00 mL of 2 mol dm−3 HCl(aq) at T=298.15 K were determined to be, Δsol H m,l 0=(94.588±0.025) kJ mol−1 and Δsol H m,2 0=–(46.118±0.055) kJ mol−1, by means of a homemade isoperibol solution–reaction calorimeter. The standard molar enthalpy of formation of the compound was determined as: Δf H m 0 (Zn(Val)SO4·H2O(s), 298.15 K)=–(1850.97±1.92) kJ mol−1, from the enthalpies of dissolution and other auxiliary thermodynamic data through a Hess thermochemical cycle. Furthermore, the reliability of the Hess thermochemical cycle was verified by comparing UV/Vis spectra and the refractive indexes of solution A (from dissolution of the [ZnSO4·7H2O(s)+Val(s)] mixture in 2 mol dm−3 hydrochloric acid) and solution A’ (from dissolution of the complex Zn(Val)SO4·H2O(s) in 2 mol dm−3 hydrochloric acid).

Restricted access