Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Z. Tang x
  • Biology and Life Sciences x
  • All content x
Clear All Modify Search

Wheat-rye 1BL.1RS translocations have been widely used in wheat breeding programs. A 1BL.1RS translocation wheat line, 91S-23, was developed from a 1R monosomic addition of the rye (Secale cereale) inbred line L155 into wheat (Triticum aestivum) MY11. A new commercial wheat cultivar, CN18, which also contained the 1BL.1RS translocation, was derived from the cross MY11 × 91S-23. Polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH) indicated that the rye centromere was eliminated from the 1BL.1RS chromosomes of CN18 but not from 91S-23. Based on the 1RS source and the centromeric structure of the translocation chromosome, CN18 qualifies as a new wheat cultivar possessing a 1BL.1RS translocation. CN18 displayed high yield performance and resistance to powdery mildew and stripe rust, whereas 91S-23 was susceptible to these diseases. The present study provides a new 1RS resource for wheat improvement.

Restricted access

Fluorescence in situ hybridization (FISH) can reveal minor structural differences of chromosomes. The karyotype of common wheat (Triticum aestivum L.) based on FISH pattern is seldom reported. In this study, non-denaturing FISH (ND-FISH) using Oligo-pSc119.2-1, Oligo-pTa535-1 and (AAG)6 as probes was used to investigate the chromosomal structure of 85 common wheat including 83 wheat-rye 1RS.1BL translocation cultivars/lines, a wheatrye 1RS.1AL translocation cultivar Amigo and Chinese Spring (CS). Two, three, two, three, six, three and four structural types respectively for 1A, 2A, 3A, 4A, 5A, 6A and 7A chromosomes were observed. Two, eight, two, two, four and six types of chromosome for 2B, 3B, 4B, 5B, 6B and 7B were respectively detected. The structure of 1B chromosomes in Amigo and CS is different. Five, two, two and two types of chromosomal structure respectively for 1D, 2D, 3D and 5D were distinguished. Polymorphisms of 1RS.1BL, 4D, 6D and 7D chromosomes were not detected. Chromosomes 1AI, 2AI, 3AI, 4AI, 5AIII, 6AI, 7AIII, 2BI, 3BV, 4BI, 5BII, 6BIII, 7BI, 1DIV, 2DI, 3DI and 5DII appeared in these 85 wheat cultivars/lines at high frequency. Each of the 85 wheat cultivars/lines has a unique karyotype. Amigo is a complex translocation cultivar. The FISH karyotype of wheat chromosomes built in this study provide a reference for the future analyzing wheat genetic stocks and help to learn structural variations of wheat chromosomes. In addition, the results in this study indicate that oligonucleotide probes and ND-FISH technology can be used to identify individual wheat cultivar.

Restricted access

Gibberellins (GAs) are a class of plant hormones that play important roles in diverse aspects during plant growth and development. A series of GA synthesis and metabolism genes have been reported or proved to have essential functions in different plant species, while a small number of GA 2-oxidase genes have been cloned or reported in wheat. Previous studies have provided some important findings on the process of GA biosynthesis and the enzymes involved in its related pathways. These may facilitate understanding of the complicated process underlying GA synthesis and metabolism in wheat. In this study, GA 2-oxidase genes TaGA2ox1-1, TaGA2ox1-2, TaGA2ox1-3, TaGA2ox1-4, TaGA2ox1-5, and TaGA2ox1-6 were identified and further overexpressed in rice plants to investigate their functions in GA biosynthesis and signaling pathway. Results showed overexpression of GA 2-oxidase genes in rice disrupted the GA metabolic pathways and induced catalytic responses and regulated other GA biosynthesis and signaling pathway genes, which further leading to GA signaling disorders and diversity in phenotypic changes in rice plants.

Restricted access

Recently, super rice has gained much importance due to its high yield potential while exogenous application of plant growth regulators (PGRs) is an important aspect in plant development and defense responses under stress conditions. In this study we conducted two pot experiments. Firstly, four super rice cultivars, viz. Peizataifeng, Huayou 213, Yuxiangyouzhan and Huahang 31 were subjected to a series of five chilling temperatures, i.e. 11 °C, 12 °C, 13 °C, 14 °C and 15 °C (day/night) for about 25–27 days. Secondly, seeds of Peizataifeng (super rice) and Yuejingsimiao 2 (non-super rice) were then treated with different combinations of salicylic acid (SA), brassinolide (BR), calcium chloride (CaCl2) and fulvic acid (FA) and then exposed to chilling stress at 13 °C for four days. Resultantly, Peizataifen (super rice) was found with the lowest seedling survival rate at all chilling temperatures among all four super rice cultivars, however, it was still found more resistant when compared with Yuejingsimiao 2 (non-super rice) in the second experiment. Furthermore synergistic effect of all PGRs alleviated low temperature stress in both rice cultivars by improving seedling survival rates, leaf area, seedling dry weight, seedling height, root morphology and by modulating antioxidant enzymes, improving proline content and lowering lipid peroxidation.

Restricted access