Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: Z. Tang x
  • Chemistry and Chemical Engineering x
  • All content x
Clear All Modify Search

Abstract  

Comparative investigations of new regenerated cellulosic fibers, bamboo viscose fiber and Tencel, together with conventional viscose fibers have been carried out to explain the similarity and difference in their molecular and fine structure. The analyses jointly using SEM, XRD and IR reveal that all the three fibers belong to cellulose II. Tencel consists of longer molecules and has a greater degree of crystallinity, while bamboo viscose fiber has a lower degree of crystallinty. TG-DTG-DSC study shows three fibers resemble in thermal behavior with a two-step decomposition mode. The first step is associated to water desorption, suggesting that bamboo viscose fiber holds better water retention and release ability, the second a depolymerization and decomposition of regenerated cellulose, indicating that Tencel is more thermally stable in this process than bamboo and conventional viscose fiber.

Restricted access

Abstract  

To provide a convenient and facile method to evaluate the radiochemical purity (RCP) of 99mTc-TRODAT-1 in quality control of routine clinical application, a simplified method of single-strip thin layer chromatography (TLC) was developed and validated by high performance liquid chromatography (HPLC). The RCP data of TLC correlated well with HPLC.

Restricted access

Abstract  

The recombination of hydrogen and oxygen in technical gaseous waste of nuclear power plants in enlarged scale experiment has been studied on the basis of our previous work.1 The catalyst and its best operating conditions for recombination of hydrogen and oxygen determined in a small scale experiment were demonstrated and tested. The results show that the data obtained in an enlarged scale experiment agreed well with that of in a small scale test. The recombination rate of H2 and O2 was higher than 98.3% and 99.98% respectively. After recombination, the residual concentrations of H2 and O2 in waste gas were O2<3 ppm, H2<400 ppm. The Pd-Al2O3 catalyst and operating conditions determined for gaseous waste processing of nuclear power plants were satisfactory.

Restricted access

Abstract

To develop thermal stable flavor, two glycosidic bound flavor precursors, geranyl-tetraacetyl-β-D-glucopyranoside (GLY-A) and geranyl-β-D-glucopyranoside (GLY-B) were synthesized by the modified Koenigs–Knorr reaction. The thermal decomposition process and pyrolysis products of the two glycosides were extensively investigated by thermogravimetry (TG), differential scanning calorimeter (DSC) and on-line pyrolysis-gas chromatography mass spectroscopy (Py-GC-MS). TG showed the T p of GLY-A and GLY-B were 254.6 and 275.7°C. The T peak of GLY-A and GLY-B measured by DSC were 254.8 and 262.1°C respectively.

Py-GC-MS was used for the simply qualitative analysis of the pyrolysis products at 300 and 400°C. The results indicated that: 1) A large amount of geraniol and few by-products were produced at 300°C, the by-products were significantly increased at 400°C; 2) The characteristic pyrolysis product was geraniol; 3) The primary decomposition reaction was the cleavage of O-glycosidic bound of the two glycosides flavor precursors. The study on the thermal behavior and pyrolysis products of the two glycosides showed that this kind of flavor precursors could be used for providing the foodstuff with specific flavor during heating process.

Restricted access

Abstract  

The recombination of hydrogen and oxygen in technical gaseous waste of nuclear power plants has been studied. A highly efficient catalyst for reacting H2 with O2 to form water was prepared. Various operating conditions and factors affecting the recombination of H2 and O2 were tested and the best conditions were determined. Results show that the Pd–Al2O3 catalyst prepared had very good characteristics. The recombination rate of H2 and O2 was higher than 98.3% and 99.9%, respectively. After recombination, residual concentrations of H2 and O2 in waste gas were O2<3 ppm, H2<400 ppm. The Pd–Al2O3 catalyst and operating conditions determined for gaseous waste processing of nuclear power plants were satisfactory.

Restricted access

Summary

An efficient and robust method for analyzing constituents of a well-known traditional Chinese medicine (TCM) formula SiWu decoction (SWD) contains Angelicae Sinensis Radix (ASR), Chuanxiong Rhizoma (CR), Paeoniae Radix Alba (PRA), and Rehmanniae Radix Praeparata (RRP) by ultra high-performance liquid chromatography (UHPLC)/time-of-flight mass spectrometry (TOF-MS) was established. The method efficiently applied to the separation of 75 compounds, including organic acids, phthalides, phenylpropanoid glycosides, iridoid glycosides, monoterpene glycosides, and galloyl glycosides in the complex prescription, 52 compounds in this study can be unambiguously identified or tentatively characterized. The separation was achieved within 20 min at the optimized chromatographic conditions. Our study provided a reliable and high-efficient method for the understanding of the chemical basis of SWD.

Restricted access