Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: L. Lv x
  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All Modify Search

Various milling parameters, wet gluten content and key dough properties were analyzed for two sister lines of bread wheat with Ae. markgrafii introgressions in genetic background of cultivar Alcedo carrying a set of sub-chromosomal alien segments on chromosomes 2AS, 2BS, 3BL, 4AL and 6DL. The lines revealed higher grain vitreousness, larger particle size of flour, and higher wet gluten content in grain compared to cv. Alcedo. The flour from these lines also showed excellent water absorption and developed more resilient dough. The introgressions in the Alcedo genome caused no reduction in 1,000-grain weight. General improvement of the grain technological properties appears to be the result of introgressions into 2AS, 2BS and 3BL chromosomes. Coincidence of locations of Ae. markgrafii introgressions in chromosome with the QTLs positions for technological traits, revealed in bread wheat mapping populations, is discussed.

Restricted access

Bread wheat is the primary bread crop in the majority of countries in the world. The most important product that is manufactured from its grain and flour is yeast bread. In order to obtain an excellent bread, grain with high physical properties is needed for flour and dough. The Russian spring wheat cultivar Saratovskaya 29 is characterized by its exclusively high physical properties of flour and dough. The purpose of this work was to identify the chromosomes carrying the main loci for these traits in Saratovskaya 29 and to map them using recombinant substitution lines genotyped with molecular markers. A set of inter-varietal substitution lines Saratovskaya 29 (Yanetzkis Probat) was used to identify the “critical” chromosomes. The donor of individual chromosomes is a spring cultivar with average dough strength and tenacity. Substitution of 1D and 4D*7A chromosomes in the genetic background of Saratovskaya 29 resulted in a significant decrease in the physical properties of the dough. Such a deterioration in the case of 1D chromosome might be related to the variability of gluten protein composition. With the help of recombinant substitution double haploid lines obtained from a Saratovskaya 29 (Yanetzkis Probat 4D*7A) substitution line the region on the 4D chromosome was revealed in the strong-flour cultivar Saratovskaya 29, with the microsatellite locus Xgwm0165 to be associated with the unique physical properties of flour and dough. The detected locus is not related to the composition gluten proteins. These locus may be recommended to breeders for the selection of strong-flour cultivars. Additionally, a QTL associated with vitreousness of grain was mapped in the short arm of chromosome 7A.

Restricted access
Cereal Research Communications
Authors: W.F. Song, Z.Y. Ren, Y.B. Zhang, H.B. Zhao, X.B. Lv, J.L. Li, C.H. Guo, Q.J. Song, C.L. Zhang, W.L. Xin, and Z.M. Xiao

Two lines, L-19-613 and L-19-626, were produced from the common wheat cultivar Longmai 19 (L-19) by six consecutive backcrosses using biochemical marker-assisted selection. L-19 (Glu-D1a, Glu-A3c/Gli-A1?; Gli-A1? is a gene coding for unnamed gliadin) and L-19-613 (Glu-D1d, Glu-A3c/Gli-A1?) formed a set of near-isogenic lines (NILs) for HMW-GS, while L-19-613 and L-19-626 (Glu-D1d, Glu-A3e/Gli-A1m) constituted another set of NILs for the LMW-GS/gliadins. The three L-19 NILs were grown in the wheat breeding nursery in 2007 and 2008. The field experiments were designed using the three-column contrast arrangement method with four replicates. The three lines were ranked as follows for measurements of gluten strength, which was determined by the gluten index, Zeleny sedimentation, the stability and breakdown time of the farinogram, the maximum resistance and area of the extensogram, and the P andWvalues of the alveogram: L-19-613 > L-19-626 > L-19. The parameters listed above were significantly different between lines at the 0.05 or 0.01 level. The Glu-D1 and Glu-A3/Gli-A1 loci had additive effects on the gluten index, Zeleny sedimentation, stability, breakdown time, maximum resistance, area, P and W values. Although genetic variation at the Glu-A3/Gli-A1 locus had a great influence on wheat quality, the genetic difference between Glu-D1d and Glu-D1a at the Glu-D1 locus was much larger than that of Glu-A3c/Gli-A1? and Glu-A3e/Gli-A1m at the Glu-A3/Gli-A1 locus. Glu-D1d had negative effects on the extensibility and the L value compared with Glu-D1a. In contrast, Glu-A3c/Gli-A1? had a positive effect on these traits compared with Glu-A3e/Gli-A1m.

Restricted access