Search Results

You are looking at 91 - 100 of 200 items for :

  • All content x
Clear All
Cereal Research Communications
Authors: W.T. Xue, A. Gianinetti, R. Wang, Z.J. Zhan, J. Yan, Y. Jiang, T. Fahima, G. Zhao, and J.P. Cheng

Crop seeds are the main staples in human diet, especially in undeveloped countries. In any case, the diet needs to be rich not only in macro-nutrients like carbohydrates and protein, but also in micro-nutrients. Nevertheless, both the macro- and micro-nutrients presented in seeds largely vary in consequence of field and environment conditions. In this research, 60 lines of a barley RILs population segregating for the SSR marker Hvm74, which is genetically linked to the GPC (grain protein content) locus (HvNAM-1), were studied in 4 environments (two growing years and two field managements) by carrying out a comprehensive profile of seed macro- (starch, total nitrogen and total soluble protein) and micro-nutrients (phytate, phenolics, flavonoids, Pi, Zn and Fe). Under field conditions, all the components were largely affected by the environment, but TN (total nitrogen) exhibited high genotype contribution, while micro-nutrients displayed higher genotype × environments interactions (GEI) than macro-nutrients. In order to approach the effects of carbon-nitrogen (C–N) balance on other seed components, two C/N ratios were calculated: C/TN (CNR1) and C/TSP (CNR2). CNR2 exhibited stronger negative correlations with all micro-nutrients. Hence, the significant GEI and its negative relationships with CNR2 highlighted the different characters of micro-nutrients in barley seeds.

Open access

Aerobic adaptation could be an important modification in the traditional rice to cope up with the increasing water scarcity problem. Identification of stable QTL for traits promoting adaptation to aerobic conditions can facilitate the development of water-efficient aerobic rice varieties with better yields. Filial and backcross populations derived from the crosses between high-yielding low-land (HKR47) and aerobic (MAS26) indica rice varieties, were evaluated for various physio-morphological traits including root traits (in case of net house evaluation). Under aerobic field conditions, grain yield per plant showed significant positive correlation with plant height, effective number of tillers/plant and panicle length in all the populations. Grain yield per plant also showed positive correlation with root length in both filial populations and with fresh and dry root weight in F2 population. Two parental rice varieties displayed polymorphism at 125 of the 803 SSR loci, which were used to map the QTL associated with traits promoting aerobic adaptation. A total of 14 QTL were detected, 10 of them were identified on chromosome 8. Study led to the identification of a number of promising plants with higher grain yield, better root length/biomass under managed aerobic conditions and possessing most of the identified QTL.

Restricted access

SSR simple sequence repeat TBE Tris-borate-EDTA buffer UV ultraviolet

Restricted access

Ali-Zade, A. A. (1949): Iz istorii gosudarstva Širvanšahov v XIII–XIV vv. Izvestija Akademii Nauk Azerbajdžanskoj SSR 8 (August). Ali-Zade, A. A. (1952): Nekotorye svedenija o prirodnyh

Restricted access

References Balakaev , M. B. – Baskakov , N. A. – Kenesbaev , S. K. ( 1962 ): Sovremennyj kazahskij jazyk . Almaty , Akademiia nauk Kazahskij SSR

Restricted access

Grain protein content (GPC) in durum wheat is a crucial determinant of pasta quality and as such is an important economic factor. This study was carried out to determine the microsatellite markers (SSRs) as associated with GPC in durum wheat grown under normal and moisture stress conditions. F3 and F4 population derived from 151 F2 individuals developed from a cross between Oste-Gata (drought tolerant) and Massara-1 (drought susceptible) genotypes, were used. The population was evaluated under four environmental conditions (two irrigation regimes in two growing seasons). The results of single marker regression analysis (SMA) revealed that 2, 4 and 10 markers to be associated with GPC, test weight (TW) and 1000 grain weight (TGW), respectively. These markers explained between 4.4 and 21.8% of the phenotypic variation in either environmental condition. The most significant marker observed for GPC was located on 5B chromosome near Xgwm408 under normal conditions and the other marker was observed on 1A, explaining about 15% of phenotypic variance. However, it was not recognized any marker related to GPC under drought stress conditions. Xgwm408 marker was coincident with the markers identified for TW, TGW and components of grain yield under drought stress conditions. In spite of 5B, the other chromosomes such as 2B and 3B were related to quantitative traits like TW and TGW. Composite interval mapping (CIM) identified 4 and 5 putative minor and major QTL for TW and TGW, respectively. Two QTL near Xbarc101 and Xbarc124 markers on 3B and 2B chromosome, explained up to 45.2 and 6% of phenotypic variations of TGW and TW, respectively.

Restricted access

Chromosome segment substitution lines (CSSLs) are powerful tools to combine naturally occurring genetic variants with favorable alleles in the same genetic backgrounds of elite cultivars. An elite CSSL Z322-1-10 was identified from advanced backcrosses between a japonica cultivar Nipponbare and an elite indica restorer Xihui 18 by SSR marker-assisted selection (MAS). The Z322-1-10 line carries five substitution segments distributed on chromosomes 1, 2, 5, 6 and 10 with an average length of 4.80 Mb. Spikilets per panicle, 1000-grain weight, grain length in the Z322-1-10 line are significantly higher than those in Nipponbare. Quantitative trait loci (QTLs) were identified and mapped for nine agronomic traits in an F3 population derived from the cross between Nipponbare and Z322-1-10 using the restricted maximum likelihood (REML) method in the HPMIXED procedure of SAS. We detected 13 QTLs whose effect ranging from 2.45% to 44.17% in terms of phenotypic variance explained. Of the 13 loci detected, three are major QTL (qGL1, qGW5-1 and qRLW5-1) and they explain 34.68%, 44.17% and 33.05% of the phenotypic variance. The qGL1 locus controls grain length with a typical Mendelian dominance inheritance of 3:1 ratio for long grain to short grain. The already cloned QTL qGW5-1 is linked with a minor QTL for grain width qGW5-2 (13.01%) in the same substitution segment. Similarly, the previously reported qRLW5-1 is also linked with a minor QTL qRLW5-2. Not only the study is important for fine mapping and cloning of the gene qGL1, but also has a great potential for molecular breeding.

Restricted access
Cereal Research Communications
Authors: B. Kumar, K.S. Hooda, R. Gogoi, V. Kumar, S. Kumar, A. Abhishek, P. Bhati, J.C. Sekhar, K.R. Yathish, V. Singh, A. Das, G. Mukri, E. Varghese, H. Kaur, V. Malik, and O.P. Yadav

Maydis leaf blight (MLB), a serious foliar fungal disease of maize, may cause up to 40% losses in yield. The present studies were undertaken to identify the stable sources of MLB resistance, its inheritance study, and testing of MLB resistance linked markers from diverse background in the Indian adapted tropical maize genotypes. A set of 112 inbred lines were screened under artificially created epiphytotics conditions at three hotspot locations. Analysis across multi-locations revealed significant effects of genotypes and environments, and non-significant effects due to genotypes × environment interaction on disease incidence. A total of 25 inbred lines with stable resistance were identified across multi-locations. Inheritance of resistance was studied in six F1s and two F2s of resistant and susceptible parents. The null hypothesis of segregation of resistance and susceptible for mono and digenic ratios in two F2 populations was rejected by Chi-square test. The non-significant differences among the reciprocal crosses depicted the complete control of nuclear genome for MLB resistance. Partial dominance in F1s and normal distribution pattern in F2s of resistant and susceptible parents suggested polygenic nature of MLB resistance. Correlation studies in F2 populations exhibited significant negative correlation between disease score and days to flowering. Five simple sequence repeats (SSRs) markers, found associated to MLB resistance in different studies were unable to differentiate amongst MLB resistance and susceptible parents in our study. This emphasizes the need of fine mapping for MLB resistance in Indian germplasm. The identified stable sources of resistance and information on inheritance study can be used further in strengthening of resistance breeding against MLB.

Restricted access

Septoria tritici blotch (STB) caused by Mycosphaerella graminicola, is one of the most destructive foliar diseases of wheat (Triticum aestivum L.) especially in temperate and humid regions across the world. The susceptibility of recently released varieties, evolution of resistance to fungicides and increasing incidence of STB disease emphasizes the need to understand the genetics of resistance to this disease and to incorporate host resistance into adapted cultivars. This study aimed to decipher the genetics and map the resistance to STB using a recombinant inbred line (RIL) mapping population derived from ‘Steele-ND’ (susceptible parent) and ‘ND 735’ (resistant parent). The RILs were evaluated in three greenhouse experiments, using a North Dakota (ND) isolate of STB pathogen. The mean disease severity of parental genotypes, ‘ND 735’ (11.96%) and ‘Steele-ND’ (66.67%) showed significant differences (p < 0.05). The population segregated for STB and the frequency distribution of RILs indicated quantitative inheritance for resistance. The mean disease severity in RILs ranged from 0 to 71.55% with a mean of 21.98%. The genome map of this population was developed using diversity array technology (DArT) and simple sequence repeat (SSR) markers. The framework linkage map of this population was developed using 469 molecular markers. This map spanned a total distance of 1,789.3 cM and consisted of 17 linkage groups. QTL mapping using phenotypic data and the framework linkage maps detected three QTL through composite interval mapping. One QTL was consistently detected in all experiments on the long arm of chromosome 5B, and explained up to 10.2% phenotypic variation. The other two QTLs, detected in single environments, were mapped to 1D and 7A and explain 13% and 5.5% of the phenotypic variation, respectively. The map position of the consistent QTL on 5BL coincides with the map position of durable resistance gene Stb1 suggesting the importance of this region of ‘ND 735’ as a source of durable STB resistance for the wheat germplasm.

Restricted access

genetic diversity among bread wheat cultivars ( Triticum aestivum L.) using SSR markers . J. Agric. Sci. 5 : 122 – 129 . Eivazi , A.R. , Naghavi , M.R. , Hajheidari , M

Restricted access