Search Results

You are looking at 101 - 110 of 181 items for :

  • "Humic acid" x
  • All content x
Clear All

Abstract  

Iodine-129 is a fission product and highly mobile in the environment. Along with other stable isotopes of iodine, 129I is released during reprocessing of nuclear fuel and must be trapped to prevent the release of radioactivity to the environment. Past studies have provided evidence that iodine can become associated with natural organic matter (NOM). This research explores the use of NOM (sphagnum peat and humic acid) to sequester iodine from the vapor and aqueous phases. NOM-associated iodine may be stable for geological storage. NOM-sequestered iodine can be recovered by pyrolysis to prepare target materials for transmutation. The nature of the NOM-iodine association has been explored.

Restricted access

Abstract  

Chemical separation yield of actinide elements from soil samples containing high amounts of organic matters was often low as compared to that for samples containing low organic matters. We compared chemical yield of uranium and plutonium from organic-rich Japanese soil and humic acid samples which were subjected to three different pretreatment procedures ((1) pulverization only, (2) dry-ashing at 510 °C after pulverization, and (3) 680 kGy gamma-ray irradiation after pulverization) prior to acid digestion. Separation of U and Pu was performed by U-TEVA resin and AG1-X8 anion exchange resin, respectively. For organic samples, pretreatment procedures governed the yield of actinide elements significantly. Chemical separation yield of U was low (6±1%) for Aldrich humic acid sample after dry-ashing at 510 °C. For such samples, gamma-ray irradiation improved the yield of U to 35±22%. Recovery of Pu was lower for some organic soil samples which were dry-ashed at 510 °C (27±2%) as compared to those which were not dry-ashed (62±10%).

Restricted access

Abstract  

Plants and soils from a natural thorium and rare-earth element occurrence (Morro do Ferro, Brazil) were analyzed by alpha spectrometry (Th) and ICP-AES (REE), after pre-concentration of the elements by solvent extraction, co-precipitation and ion exchange procedures. Leaching experiments with humic acid solutions and different soils were performed to estimate the fraction of elements biologically available. High concentrations of the light rare-earth elements (LREE) and of Th, reaching some hundreds of g/g-ash, were measured in plant leaves from the areas of the highest concentration of these elements in soil and in near-surface waters. Chondrite normalized REE plots of plant leaves and corresponding soils are very similar, suggesting that there is no significant fractionation between the REE during uptake from the soil solution and incorporation into the leaves. However, Ce-depletion was observed for some plant species, increasing forSolanum ciliatum in the sequence: leaves<fruits<seeds. Soil to plant concentration ratios (CR's) for Th and the REE, based on the total concentration of these elements in soils, are in the range of 10–3 to 10–2. Leaching experiments confirmed the importance of humic acid complexation for the bio-uptake of Th and REE and further showed that only a very small fraction of these elements in soil is leachable. The implications of these results on the calculated CR's will be discussed.

Restricted access

Abstract  

The complexation of technetium with humic acid is usually done by a reduction of pertechnetate by Sn2+ ions. A Tc-HA complex can be scavenged in a Sn-HA complex, if tin is present as reductant. The main aim of the study was a preparation of the Tc-HA complex without impurities of Sn ions or other metal reductant, which was performed by a ligand exchange with hexakis(thiourea-S)technetium(III) under nitrogen atmosphere at pH 5.5. The [Tc(tu)6]3+ complex was prepared from TcO4 - in acidic solution with thiourea as a reductant. Presence of the Tc-HA complex and other technetium species was determined by gel chromatography, paper chromatography and dialysis. Yield of Tc-HA complex was about 80% and reaction mixture contains about 20% of technetium dioxide, which is a side product of ligand-exchange.

Restricted access

Caracterisation par analyse thermique differentielle des complexes metalliques fulviques et humiques

II. Essai d'application aux complexes organométalliques naturels

Journal of Thermal Analysis and Calorimetry
Authors: P. Jambu, T. Dupuis, and M. Garais

The preliminary study of artificial complexes of iron or calcium with fulvic and humic acids allow us to interpret the DTA curves of total samples of some humiferous soils.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: K. Lieser, R. Hill, U. Mühlenweg, R. Singh, Tu Shu-De, and Th. Steinkoff

Abstract  

The influence of the following parameters is discussed: oxidation state (Eh), hydrolysis (pH), solubility, complex formation, colloid formation, sorption and filtration effects. The oxidation states of the actinides in neutral aqueous media are plotted as a function of the redox potential. Hydrolysis, stability of 11 carbonato complexes, of humic acid complexes and solubilities of the hydroxides in the various oxidation states are considered. Mobility is investigated as a function of pH by paper chromatography. Partition of the actinides in groundwaters on the molecular fraction, the fine particle (colloid) fraction and the coarse particle fraction is determined as a function of pH by filtration and ultrafiltration. Sorption ratios are measured as function of pH, salt concentration and of EDTA concentration. When the groundwaters are passed through the sediments, mainly the coarse particle fractions are retained by size filtration. The pronounced influence of the redox potential on sorption is demonstrated for Np.

Restricted access

Abstract  

The association properties of Pu with aquatic humic substances in a 0.01M NaClO4 solution at pH 6–8 were studied on the basis of molecular size distribution. Seven humic substances were isolated from river water and groundwaters using XAD extraction technique. They were used for comparing their effects on the association of Pu. In the presence of humic acid, the dominant molecular size of Pu was 100–30 kDa. In the presence of fulvic acid, Pu exhibited three dominant molecular sizes: 30–10 kDa, 30–5 kDa, and less than 5 kDa. The association of Pu-humus complexes might be controlled by the molecular size distribution of humic substances and characteristics of their respective size fractions.

Restricted access

Abstract  

Within this work the analysis of the kinetic stability of a series of yttrium complexes, i.e., Y-citrate, Y-NTA, Y-CDTA as well as Y-humic acid (Y-HA) has been successfully performed by the free-ion selective radiotracer extraction (FISRE) method. FISRE uses 90Y with a high specific activity to perform CHELEX extractions in a buffered aqueous solution at pH 6 in two different modes by monitoring the dissociation and association reactions of the corresponding complexes. Whereas in the case of Y-citrate the dissociation profile could be successfully described in terms of (pseudo) first order kinetics, the other complexes tend to form two species with different kinetic properties, although only one species is predicted by speciation calculations. In the batch FISRE method, all (except Y-NTA) corresponding association rate constants were determined by monitoring the formation rate of the yttrium complexes.

Restricted access

Abstract  

MX-80 bentonite is considered as one of the best backfill materials for high-level radioactive nuclear waste. Herein, the bentonite is characterized by using XRD and FTIR techniques. Sorption of radionickel to MX-80 bentonite in the presence/absence of humic acid (HA) or fulvic acid (FA) as a function of pH is investigated. The results indicate that the presence of HA or FA decreases the sorption of Ni2+ obviously. The different experimental processes do not affect the sorption of nickel to FA/HA bound bentonite. The sorption of Ni2+ on FA/HA-bound bentonite decreases with the increasing FA/HA content in the systems. The mechanism of nickel sorption is also discussed in detail.

Restricted access

Summary  

Three independent speciation techniques, the free liquid/moving boundary electrophoresis, ultrafiltration, and equilibrium dialysis, combined with the radiotracer method (using 152Eu) have been compared at the study of Eu interaction with humic acid (HA). The degree of complexation of Eu in 10 mg/l Aldrich HA solutions was determined within a broad range of metal loading (Eu total concentration 10-8-10-4 mol . l-1), at pH 4 and 6, ionic strength of 0.01 and 0.1 (NaClO4). From the anodic electrophoretic mobilities determined, additional information on the charge of the Eu-HA complexes was obtained. Uncertainty of the determination given by sorption losses of Eu on the walls and membranes of the experimental devices, and the effect of kinetic lability of the Eu-HA complexes are estimated. Based on the ultrafiltration experiments, the existence of an unknown, labile, high-molecular non-humic Eu species is discussed.

Restricted access