Search Results

You are looking at 101 - 110 of 300 items for :

  • "durum wheat" x
  • All content x
Clear All

Purple colour of wheat grain is determined by anthocyanin accumulation in the pericarp. This trait is controlled in hexaploid Triticum aestivum or tetraploid T. durum wheats by two complementary dominant genes Pp1 (chromosome 7B) and Pp3 (chromosome 2A). It remained unclear, whether functional alleles of one of the two complementary Pp genes occur in the diploid progenitors of allopolyploid wheat or in tetraploid T. timopheevii. In the current study, a purple-grained wheat line PC was obtained by crossing non-purple-grained T. aestivum Line 821 and Line 102/00i carrying introgressions from T. timopheevii and Aegilops speltoides, respectively. Crosses of lines 821 and 102/00i with a number of tester lines and cultivars did not result in purple-grained genotypes suggesting that expression of this trait in PC was controlled by complementary factors, one located in the T. timopheevii introgression and the other in the introgression inherited from Ae. speltoides. Genotyping of PC and other parental lines using microsatellite markers located on wheat chromosomes 7B and 2A showed that PC carries chromosome 7S of Ae. speltoides substituting for chromosome 7B, whereas chromosome 2A of PC contains an extended introgression from T. timopheevii.

Restricted access

Abstract  

Twelve biological-matrix, agricultural/food reference materials, Corn Stalk (Zea Mays) (NIST RM 8412), Corn Kernel (Zea Mays) (NIST RM 8413), Bovine Musele Powder (NIST RM 8414), Whole Egg Powder (NIST RM 8415), Microcrystalline Cellulose (NIST RM 8416), Wheat Gluten (NIST RM 8418), Corn Starch (NIST RM 8432), Corn Bran (NIST RM 8433), Whole Milk Powder (NIST RM 8435), Durum Wheat Flour (NIST RM 8436), Hard Red Spring Wheat Flour (NIST RM 8437) and Soft Winter Wheat Flour (NIST RM 8438) were developed. They were characterized with respect to elemental composition via two extensive international interlaboratory characterization campaigns providing 303 reference and informational concentration values for 34 elements (Al, As, B, Ba, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, F, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Ti, V, W, Zn) of nutritional, toxicological, and environmental significance. These products are available to the analytical community, for quality control of elemental composition analytical data, from the Standard Reference Materials Program, National Institute of Standards and Technology, Gaithersburg, MD, USA.

Restricted access

Nachit, M.M., Nachit, G., Ketata, H., Gauch, H.G., Zobel, R.W. 1992. Use of AMMI and linear regression models to analyze genotype-environment interaction in durum wheat. Theor. Appl. Genet. 83 :597–601. Zobel

Restricted access

Grains of 12 accessions of Triticum timopheevii (Zhuk.) Zhuk. ssp. timopheevii (AAGG, 2n = 4x = 28) and one bread wheat cultivar Chinese Spring (CS) and one durum wheat cultivar Langdon (LDN) grown across two years were analyzed for grain iron (Fe) and zinc (Zn) concentrations. All the 12 tested T. timopheevii ssp. timopheevii genotypes showed significantly higher concentration of grain Fe and Zn than CS and LDN. Aboundant genetic variability of both the Fe and Zn concentrations was observed among the T. timopheevii ssp. timopheevii accessions, averagely varied from 47.06 to 90.26 mg kg−1 and from 30.05 to 65.91 mg kg−1, respectively. Their grain Fe and Zn concentrations between years exhibited a significantly positive correlation with the correlation coefficients r = 0.895 and r = 0.891, respectively, indicating the highly genetic stability. Flag leaf possessed twice or three times higher concentrations for both Fe and Zn than grain, and a significantly high positive correlation appeared between the two organs with r = 0.648 for Fe and r = 0.957 for Zn concentrations, respectively, suggesting flag leaves might be indirectly used for evaluating grain Zn and Fe contents. Significant correlations occurred between grain Fe and Zn concentrations, and between grain Zn concentration and the two agronomic traits of plant height and number of spikelets per spike. Both the concentrations were not related to seed size or weight as well as NAM-G1 gene, implying the higher grain Fe and Zn concentrations of T. timopheevii ssp. timopheevii species are not ascribed to concentration effects of seed and the genetic control of NAM-G1 gene. There might be some other biological factors impacting the grain’s Zn and Fe concentrations. These results indicated T. timopheevii ssp. timopheevii species might be a promising genetic resource with high Fe and Zn concentrations for the biofortification of current wheat cultivars.

Restricted access

, R. P., Mujeeb-Kazi, A. (1997): Resistance to stripe rust in durum wheats, A-genome diploids, and their amphiploids. Euphytica , 94 , 279–286. Mujeeb-Kazi A. Resistance to stripe

Restricted access

. Araus , J.L. , Amaro , T. , Casadesús , J. , Asbati , A. , Nachit , M.M. 1998 . Relationships between ash content, carbon isotope discrimination and yield in durum wheat . Functional Plant Biol. 25 : 835 – 842

Restricted access
Cereal Research Communications
Authors: Sonja Maric, Tihomir Cupic, Goran Jukic, Ivan Varnica, and Dario Dunkovic

Akcura M. — Kaya Y. — Taner S.: 2005. Genotype-environment interaction and phenotypic stability analysis for grain yield of durum wheat in the central Anatolian region. Turk J Agric For no. 29 369–375 pp

Restricted access

Korkut, K. Z., Başer, I., Bilir, S. (1993): Studies on correlation and path analysis in durum wheats. pp. 183-187. Symposium of Durum Wheat and Its Products, Ankara. Studies on correlation and path analysis in durum wheats

Restricted access

growth condition effects on doubled haploid production in durum wheat crossed with maize. Plant Breeding 119 :289–298. DePauw R.M. Dicamba and growth condition effects on doubled

Restricted access

Autran J.C., Laignelet B., Morel M.H. 1987. Characterization and quantification of LMW glutenins in durum wheats. Biochimie 69 :699–711. Morel M

Restricted access