Search Results

You are looking at 101 - 110 of 215 items for :

  • "thermodynamic functions" x
  • All content x
Clear All

Abstract  

Al2O3-Cr2O3 solid solutions with 0, 4, 7, 10 and 20 mol% of corundum were synthesized using a high-pressure/high-temperature apparatus and characterized by X-ray powder diffraction. Calorimetric measurements were carried out using DSC-111 (Setaram). Heat capacity was measured by the enthalpy method in a temperature range of 260–340 K, near magnetic phase transition in pure Cr2O3 (305 K). Magnetic contribution into the heat capacity was derived and found to change irregularly with the composition. Heat capacity of solid solutions remains constant in a relatively wide range of composition, while the C p values of the end members differ significantly. This phenomenon is very important for the modeling of the thermodynamic functions of intermediate solid solutions.

Restricted access

Abstract  

Both calorimetric determination of displacement adsorption enthalpies ΔH and measurement of adsorbed amounts of lysozyme (Lyz) denatured by 1.8 mol L−1 guanidine hydrochloride (GuHCl) on a moderately hydrophobic packings at 298 K, pH 7.0 and various salt concentrations were carried out. Based on the thermodynamics of stoichiometric displacement theory (SDT) the fractions of thermodynamic functions, which related to four subprocesses of denatured protein refolding on the surface, were calculated and thermodynamic analysis that which one of the subprocesses plays major role for contribution to the thermodynamic fractions was made in detail. The moderately hydrophobic surface can provide denatured Lyz energy and make it gain more conformation with surface coverage or salt concentration increment. The displacement adsorptions of denatured Lyz onto PEG-600 surface are exothermic, more structure-ordered and enthalpy driven processes.

Restricted access

DSC and vapour pressure measurements are presented on some Be, Al and Cr complexes with 2,4-pentanedione tetramethyl-3,5-heptanedione, 1,1,1-trifluoro-2,4-pentanedione and hexafluoro-2,4-pentanedione. Thermodynamic functions are given for the sublimation, vaporization and melting processes of the substances.

Restricted access

Abstract  

Heat capacity measurements between 293 K and 363 K have been carried out in order to elucidate the different states appearing in 2-amino-2-methyl-1,3 propanediol (AMP) plastic crystal. The results allowed one of them to be identified as a glassy crystal. The changes of enthalpy, entropy and Gibbs free energy thermodynamic functions with temperature have been calculated from the experimental heat capacity values.

Restricted access

Abstract  

The non-isothermal kinetics of dehydration of AlPO4·2H2O was studied in dynamic air atmosphere by TG–DTG–DTA at different heating rates. The result implies an important theoretical support for preparing AlPO4. The AlPO4·2H2O decomposes in two step reactions occurring in the range of 80–150 °C. The activation energy of the second dehydration reaction of AlPO4·2H2O as calculated by Kissinger method was found to be 69.68 kJ mol−1, while the Avrami exponent value was 1.49. The results confirmed the elimination of water of crystallization, which related with the crystal growth mechanism. The thermodynamic functions (ΔH*, ΔG* and ΔS*) of the dehydration reaction are calculated by the activated complex theory. These values in the dehydration step showed that it is directly related to the introduction of heat and is non-spontaneous process.

Restricted access

Abstract  

Heat capacity C p(T) of the orthorhombic polymorph of L-cysteine was measured in the temperature range 6–300 K by adiabatic calorimetry; thermodynamic functions were calculated based on these measurements. At 298.15 K the values of heat capacity, C p; entropy, S m 0(T)-S m 0(0); difference in the enthalpy, H m 0(T)-H m 0(0), are equal, respectively, to 144.6±0.3 J K−1 mol−1, 169.0±0.4 J K−1 mol−1 and 24960±50 J mol−1. An anomaly of heat capacity near 70 K was registered as a small, 3–5% height, diffuse ‘jump’ accompanied by the substantial increase in the thermal relaxation time. The shape of the anomaly is sensitive to thermal pre-history of the sample.

Restricted access

Abstract  

The molar heat capacity C p,m of 1,2-cyclohexane dicarboxylic anhydride was measured in the temperature range from T=80 to 390 K with a small sample automated adiabatic calorimeter. The melting point T m, the molar enthalpy Δfus H m and the entropy Δfus S m of fusion for the compound were determined to be 303.80 K, 14.71 kJ mol−1 and 48.43 J K−1 mol−1, respectively. The thermodynamic functions [H T-H 273.15] and [S T-S 273.15] were derived in the temperature range from T=80 to 385 K with temperature interval of 5 K. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetry (TG), when the process of the mass-loss was due to the evaporation, instead of its thermal decomposition.

Restricted access

Abstract  

The solubility and solubility product of europium trifluoride were measured by radiometric, potentiometric and conductometric methods. There are significant differences in the values of both solubility and solubility product obtained by the three different techniques. Due to reasons discussed in the text, radiometric values seem to be more acceptable than the others. The thermodynamic functions such as ΔH0, ΔG0 and ΔS0 for the dissolution process were also measured. The positive values of ΔH0 and ΔG0 and the negative value of ΔS0 are indicative of the slight solubility of EuF3. The dependence of solubility on pH and also on the fluoride concentration has also been studied. It was confirmed that europium forms a monofoluoride complex in aqueous solution. The stability constant of this complex was estimated.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Elena Boldyreva, V. Drebushchak, I. Paukov, Yulia Kovalevskaya, and Tatiana Drebushchak

Abstract  

Monoclinic (I) and orthorhombic (II) polymorphs of paracetamol were studied by DSC and adiabatic calorimetry in the temperature range 5 - 450 K. At all the stages of the study, the samples (single crystals and powders) were characterized using X-ray diffraction. A single crystal → polycrystal II→ I transformation was observed on heating polymorph II, after which polymorph I melted at 442 K. The previously reported fact that the two polymorphs melt at different temperatures could not be confirmed. The temperature of the II→I transformation varied from crystal to crystal. On cooling the crystals of paracetamol II from ambient temperature to 5 K, a II→ I transformation was also observed, if the 'cooling-heating' cycles were repeated several times. Inclusions of solvent (water) into the starting crystals were shown to be important for this transformation. The values of the low-temperature heat-capacity of the I and II polymorphs of paracetamol were compared, and the thermodynamic functions calculated for the two polymorphs.

Restricted access

Abstract  

Equilibrium adiabatic heat-capacity measurements have been made on zone refined samples of CeB6 and PrB6. Companion measurements made on LaB6, NdB6, and GdB6 have been reported elsewhere. These show cooperative lambda-type anomalies associated with antiferro-magnetic ordering. Except for lanthanum hexaboride, Schottky internal crystal field levels result in significant contributions to the thermodynamic functions. The gross thermodynamic properties at 298.15 K heat capacity (Cp/R), entropy increment (ΔT 0,m S 0/R), and Gibbs energy function are correlated with the nature of the lanthanide. For LaB6, CeB6, PrB6, NdB6, and GdB6 the three properties are, respectively: {11.654, 12.014, 11.997, 11.916, 11.695} Cp/R; {10.001, 11.803, 12.430, 12.558, 13.982} S0/R, and finally {4.379, 5.912, 6.232, 6.451, 7.905}Φ0 m/R.

Restricted access