Search Results

You are looking at 121 - 130 of 182 items for :

  • "Humic acid" x
  • All content x
Clear All

Abstract  

The sorption of Co(II) on Na-montmorillonite was conducted under various conditions, i.e., contact time, adsorbent dosage, pH, ionic strength, foreign ions, fulvic acid (FA), humic acid (HA) and temperature. Results of sorption data analysis indicated the sorption of cobalt on Na-montmorillonite was strongly dependent on pH and ionic strength. At low pH, the sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on Na-montmorillonite, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The presence of different cations influenced Co(II) sorption, while the presence of different anions had no differentiable influences on Co(II) sorption. The presence of HA and FA decreased the sorption of Co(II) on montmorillonite. The sorption isotherms are simulated well with the Langmuir model. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature dependent isotherms indicated that the sorption reaction of Co(II) on montmorillonite was an endothermic and spontaneous process. The sorption test revealed that the low cost material was a suitable material in the preconcentration of Co(II) from large volumes of aqueous solutions.

Restricted access

Abstract  

With increasing global nuclear activities, there is a growing interest in understanding the migration behavior of transuranic elements in the terrestrial environment. The laboratory investigations on the adsorption behavior of AM(III) (10–7M) in aqueous solutions showed that there was not adsorption of Am(III) on glass or polyethylene vials from aqueous solutions at pH<3. The rate of adsorption was found to be inversely related to the (H+) in the pH range 4–7. It was also found to be strongly influenced by stirring/shaking as well as by the presence of particulate matter in the aqueous phase. The presence of particulate matter (>0.6 m) in the aqueous solutions significantly inhibits the adsorption rate. Attempts to fit the kinetic data (collected on filtered [particle size >0.6 m] or unfiltered distilled water at pH 6) to the reversible or irreversible first order rate equation did not successfully indicate the complexity of the adsorption process. The presence of 20mg/liter of humic acid at pH 6.3 completely inhibits the adsorption of Am on glass surfaces.

Restricted access

Abstract  

The sorption of 63Ni(II) from aqueous solution using ZSM-5 zeolite was investigated by batch technique under ambient conditions. ZSM-5 zeolite was characterized by point of zero net proton charge (PZNPC) titration. The sorption was investigated as a function of shaking time, pH, ionic strength, foreign ions, humic acid (HA), fulvic acid (FA) and temperature. The results indicate that the sorption of 63Ni(II) on ZSM-5 zeolite is strongly dependent on pH. The sorption is dependent on ionic strength at low pH, but independent of ionic strength at high pH values. The presence of HA/FA enhances 63Ni(II) sorption at low pH values, whereas reduces 63Ni(II) sorption at high pH values. The sorption isotherms are simulated by Langmuir model very well. The thermodynamic parameters (i.e., ∆H 0, ∆S 0 and ∆G 0) for the sorption of 63Ni(II) are determined from the temperature dependent sorption isotherms at 293.15, 313.15 and 333.15 K, respectively, and the results indicate that the sorption process of 63Ni(II) on ZSM-5 zeolite is spontaneous and endothermic.

Restricted access

Abstract  

Carbonate hydroxylapatite (CHAP), prepared from eggshell waste, was used to remove 60Co(II) from aqueous solutions. The sorption of 60Co(II) on CHAP as a function of contact time, pH, ionic strength and foreign ions in the absence and presence of humic acid and fulvic acid under ambient conditions was studied. The sorption of 60Co(II) on CHAP was strongly dependent on pH and ionic strength. The thermodynamic parameters (ΔH 0, ΔS 0, ΔG 0) of 60Co(II) sorption on CHAP were calculated from the temperature-dependent sorption isotherms, and the results indicated that the sorption process of 60Co(II) on CHAP was endothermic and spontaneous. At low pH, the sorption of 60Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on CHAP surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. Experimental results also indicated that CHAP was a suitable low-cost adsorbent for pre-concentration and solidification of 60Co(II) from large volumes of aqueous solutions.

Restricted access

Abstract  

The aim of this study is the separation and pre-concentration of thorium from aqueous solutions by cloud point extraction (CPE) and its the radiometric determination by liquid scintillation counting (LSC). For CPE, tributyl phosphate (TBP) was used as the complexing agent and (1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol (Triton X-114) as the surfactant. The radiometric measurements were performed after phase separation by mixing of the surfactant phase with the liquid scintillation cocktail. The effect of experimental conditions such as pH, ionic strength (e.g. [NaCl]) and the presence of other chemical species (e.g. Ca2+ and Fe3+ ions, and humic acid colloids) on the CPE separation recovery have been investigated at constant reactant ratio (m(TBP)/m(Triton) = 0.1). According to the experimental results the maximum chemical recovery is (60 ± 5)% at pH 3. Regarding the other parameters, generally Ca2+ and Fe3+ ions as well as the presence of colloidal species in solution (even at low concentrations) results in significant decrease of the chemical recovery of uranium. On the other hand increasing NaCl concentration leads to enhancement of chemical recovery. Generally, the method could be applied successfully for the radiometric determination of thorium in water solutions with relatively increased thorium content.

Restricted access

Abstract  

Bentonite has been studied extensively because of its strong sorption and complexation ability. Herein, GMZ bentonite from Gaomiaozi county (Inner Mongolia, China) was investigated as the candidate of backfill material for the removal of Th(IV) ions from aqueous solutions. The results indicate that the sorption of Th(IV) is strongly dependent on pH and ionic strength at pH < 5, and independent of ionic strength at pH > 5. Outer-sphere surface complexation or ion-exchange are the main mechanism of Th(IV) sorption on GMZ bentonite at low pH values, whereas the sorption of Th(IV) at pH > 5 is mainly dominated by inner-sphere surface complexation or surface precipitation. Soil fulvic acid (FA) and humic acid (HA) have a positive influence on the sorption of Th(IV) on bentonite at pH < 5. The different addition sequences of HA and Th(IV) to GMZ bentonite suspensions have no obvious effect on Th(IV) sorption to HA-bentonite hybrids. The high sorption capacity of Th(IV) on GMZ bentonite suggests that the GMZ bentonite can remove Th(IV) ions from large volumes of aqueous solutions in real work.

Restricted access

Abstract  

A novel γ-MnO2 hollow structure has been synthesized using a simple chemical reaction between MnSO4 and KMnO4 in aqueous solution without using any templates, surfactants, catalysts, calcination and hydrothermal processes. As an example of potential applications, γ-MnO2 hollow structure was used as adsorbent in radionuclide 60Co(II) treatment, and showed an excellent ability. The effect of pH, contact time, ionic strength, humic acid (HA)/fulvic acid (FA), and temperature was investigated using batch techniques. The results indicated that the sorption of 60Co(II) on γ-MnO2 was obviously dependent on pH values but independent of ionic strength. The presence of HA/FA enhanced the sorption of 60Co(II) on γ-MnO2 at low pH, whereas reduced 60Co(II) sorption on γ-MnO2 at high pH. The kinetic sorption of 60Co(II) on γ-MnO2 can be well fitted by the pseudo-second-order rate equation. The thermodynamic parameters (ΔH 0, ΔS 0, ΔG 0) were also calculated from the temperature dependent sorption isotherms, and the results suggested that the sorption of 60Co(II) on γ-MnO2 was a spontaneous and endothermic process. The sorption of 60Co(II) on γ-MnO2 was attributed to surface complexation rather than ion exchange.

Restricted access

Abstract  

The sorption behavior of the pertechnetate anion in various solid-solution systems under aerobic conditions and pH 1.3–12.5 has been investigated. Batch techniques were employed. On most of natural minerals only surface adsorption occurs. Rs-values were no larger than 2.0 ml · g–1. Adsorption on various natural minerals and rocks such as sandstone, basalt, granite, pyrite, peat and others are comparaed with the analogous processes on artificial inorganic sorbents: titanium oxides (thermoxide-34, thermoxide-3), crystaline cadmium sulfide, zirconium phosphate, and complex inorganic sorbents: antimony oxide — silicon oxide — phosphorus pentoxide, antimony oxide — silicon oxide — aluminium oxide, lithium oxide — manganese oxide — aluminium oxide — water, lithium oxide — titanium oxide —chromium oxide — water. For comparison the sorption of Tc on some organic sorbents was included. The solubility of Tc2S7 in water was measured to be 0.257 g/l. It has been shown that preliminary irradiation of sorbents such as sandstone, peat and humic acid by -rays with doses not less than 107 rad results in the decrease of Tc(VII) sorption.

Restricted access

Abstract  

The sorption of trace europium, as a trivalent actinide homologue, was studied in the system Gorleben sand - aqueous solution with the aim to elucidate its mechanism. Radiotracer method (152/154Eu) and batch experiments were used. Simultaneously, the distribution of humic substances present in, or added to the system was measured. The evaluation of the sorption was complicated by the adsorption of Eu on the walls of polyethylene vials used for the experiments, which was rather high and had to be taken into consideration. It has been found that Eu sorption on Gorleben sand increases from pH 2 to pH 5-7 and then it decreases. The decrease is due to the complexation of Eu with humic substances leached from Gorleben sand at pH >7. The position of the sorption maximum depends on the composition of the solution and on the liquid-to-solid ratio. It is shifted to lower pH values in the presence of added humic acid (HA), which enhances Eu sorption at low pH values and suppresses it at pH values higher than 5. The regions of the enhancing/suppressing effects coincide with the high/low adsorption of HA on Gorleben sand, respectively. The increasing ionic strength (from 0.01 to 0.1) and europium concentration (3.4.10-8 to 9.3.10-7 mol/l) suppress the relative sorption (expressed in %) at low pH values and enhance it at pH>6-8. Addition of carbonates (5.10-3 mol/l) supports Eu sorption at pH>7.5 so that no decrease with pH is observed till pH 9. Alkaline leaching of the sand significantly changes most of the effects found. These results were qualitatively interpreted and conclusions were drawn on the mechanism of the sorption.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: Qifeng Liu, Jiali Liao, Ning Liu, Dong Zhang, Houjun Kang, Yuanyou Yang, Bing Li, Haijun Zhu, and Jiannan Jin

Abstract  

As an important radioisotope in nuclear industry and other fields, 241 Am is one of the most serious contamination concerns due to its high toxicity and long half-life. In order to supply useful reference for disposal of 241Am waste with low-medium radioactivity, the adsorption and migration behavior of 241Am on aerated zone soil were investigated by the static experimental method and column experiments. The results showed that more than 98% of the total 241Am could be adsorbed from 241Am solution of 0.32·10−7−1.1·10−7 mol/l by the soil at pH 4–9. The adsorption of 241Am on the soil was a pH-dependent process at pH<4, but for pH>4, the adsorption rate of 241Am on the soil changed minutely. The adsorption equilibrium was achieved within 24 hours and no significant effect on adsorption of 241Am was observed at liquid-solid ratios of 50:1–500:1. The relationship between concentration of 241Am and adsorption capacities of 241Am can be described by the Freundlich adsorption equation. Adsorption of 241Am on the soil can be inhibited by humic acid, ferric hydroxide colloid, or some anions, such as citric acid anion, saturated EDTA solution, C2O4 2− and CO3 2−. It was also noted that the adsorption rate of 241Am drops in solutions containing Eu3+ or Nd3+, even 0.5 times above the 241Am concentration. A migration distance of 8 mm for 241Am(III) is observed only in the aerated zone soil containing ferric colloid, while a migration distance of less than 2 mm is noted in other soil samples after more than 250 days. All these results indicate that the aerated zone soil is an efficient sorbent for 241Am and can inhibit the migration of 241Am.

Restricted access