Search Results

You are looking at 121 - 130 of 2,586 items for :

  • "Spectroscopy" x
  • All content x
Clear All

Abstract  

Thermal analysis has been used to study the composition of paper and paper-like materials for some decades. The application of these techniques permits to distinguish between the original paper which was used by the artists and possible forgeries. Quite often, however, the identification of the differences demands the simultaneous application of several other techniques. The present investigation includes Asiatic wood-prints from China and Japan, and lithographs of European artists, such as Pablo Picasso, Salvador Dali, and Marc Chagall. Utamaro (1753–1806) is one of the most celebrated artists in the history of the Japanese woodblock print. He became one of the famous painters of ‘Ukiyo-e’ (Ukiyo-e means transitory world). In China Utamaro's pictures were also produced. The differences are found in the kind of paper: The Japanese used Mitsumata paper, while the Chinese printed on Bamboo paper mixed with silk fibers. Hu-j-zong (Nanking, 1619) and a group of famous Chinese painters created the book of the ‘Ten Bamboo Studio’ which contains woodblock prints as visual aids for young artists. A reprint of these woodblock prints appeared in 1717. Later, a bootleg of this book appeared in Japan (1817). The differentiation is possible by thermogravimetric investigation of the used papers. Statistic evaluations in Europe show that more than 1 000 000 bootleg copies of lithographs of Pablo Picasso, Salvador Dali, and Marc Chagall exist. Thermoanalytical measurements allow the distinction between the original artifacts and the bootlegs. Raman spectroscopy gives an additional possibility for the distinction between the applied color pigments.

Restricted access

Abstract  

Introduction of the Mössbauer nuclei 57Fe into Hg-1223 phase and that of 57Fe and 151Eu into Tl-1212 and Tl-1223 superconductors were investigated. Samples of high phase purity were obtained. Scanning electron microscopy and optical microscopy in normal and polarized light were employed to study the microstructure of the specimens. Energy dispersive X-ray analysis showed that 57Fe in the Hg-based samples and 57Fe as well as 151Eu in the Tl-based compounds, entered superconducting phases. Incorporation of Eu3+ into the superconducting phase favored the formation of the Tl-1212 phase. Mössbauer spectroscopy showed that Eu3+ entered the Ca-site. Two doublets found in the 57Fe Mössbauer spectra in both the Hg-1223 and the Tl-1223 phase referred to two different micro-environments of Fe3+. The assignment of the 57Fe Mössbauer spectra was made under the assumption that Fe favored the 1223 phase. Fe3+ may replace Cu in both the square pyramidal, five-fold oxygen coordinated Cu sites between the Ca and Ba-(Sr)-O layers, and in the square planar, four-fold oxygen coordinated Cu sites the Ca layers in the superconducting phases in both the Hg- and the Tl-based materials. From the relative areas of the two doublets, we concluded that the Fe3+ preferred the square planar Cu site.

Restricted access

Abstract  

The activity concentration of radionuclides, such as 238U, 226Ra and 40K of limestone rocks in northern Iraq was measured using gamma spectroscopy. The radionuclide activities were obtained and discussed. CR-39 nuclear track detector was used to measure the radon exhalation rates as well as the effective radium contents of these samples and are found to correspond with uranium concentration values measured by NaI(Tl) detector in the corresponding limestone rocks samples. The absorbed gamma dose rates in air due to the presence of 238U, 226Ra, 40K and cosmic ray contribution varied between 105.3 and 223.11 nGy/h. The annual effective dose of each sample has been calculated. The correlation between activities of 226Ra, 222Rn exhalation rates and 238U is explained. Results show a symmetrical distribution of activity concentrations of primordial of radionuclides in selected samples. The values of all studied radionuclides are considered to be a typical level of natural background and compared with results of similar investigations carried out else where.

Restricted access

Abstract  

The thermal analysis of euchroite shows two mass loss steps in the temperature range 100–105 °C and 185–205 °C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot-stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH)·3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4·5H2O → arhbarite Cu2Mg(AsO4)(OH)3. HSRS inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm−1 assigned to the ν1 AsO4 3− symmetric stretching vibration and 801, 822, and 871 cm−1 assigned to the ν3 AsO4 3− (A1) antisymmetric stretching vibrations. A distinct band shift is observed upon heating to 275 °C. At 275 °C, the four Raman bands are resolved at 762, 810, 837, and 862 cm−1. Further heating results in the diminution of the intensity in the Raman spectra, and this is attributed to sublimation of the arsenate mineral. HSRS is the most useful technique for studying the thermal stability of minerals, especially when only very small amounts of mineral are available.

Restricted access

Abstract  

Corrosion products of mild steel exposed to four different cultures of sulfur reducing bacteria (SRB) grown in a synthetic medium have been studied by transmission Mössbauer spectroscopy (TMS). Cultures of SRB studied are two hydrogenase positive strains,Desulfovibrio desulfuricans (DD) andDesulfovibrio vulgaris (DV) and two hydrogenase negative strainsDesulfotomaculum orientis orientis (DO) andDesulfotomaculum nigrificans (DN). The corrosion products generated on the coupons as well as in the broth were studied. In all the cases, the corrosion products removed from coupons showed the presence of green rust 2 (GR2), ferrous sulfides, γ-FeOOH and superparamagnetic (SPM) α-FeOOH in different proportions. The corrosion products from the broth showed a symmetrical central doublet, which indicates the presence of γ-FeOOH and SPM α-FeOOH along with ferrous sulfides. The corrosion products from coupons suspended in sewage water also showed the presence of GR 2 and ferrous sulfides together with oxyhydroxides. FTIR spectrum supports the presence of these phases in corrosion products. The formation of GR 2 on coupons seems to be the first step for the SRB induced corrosion. The corrosion rate has been found in the order of DO>DN>DV>DD.

Restricted access

Abstract  

We report on the design, construction, and testing of a gamma-ray imaging system with spectroscopic capabilities. The imaging system consists of an orthogonal strip detector made from either HgI2 or CdZnTe crystals. The detectors utilize an 8×8 orthogonal strip configuration with 64 effective pixels. Both HgI2 or CdZnTe detectors are 1 cm2 devices with a strip pitch of approximately 1.2 mm (producing pixels of 1.2 mm × 1.2 mm). The readout electronics consist of parallel channels of preamplifier, shaping amplifier, discriminators, and peak sensing ADC. The preamplifiers are configured in hybrid technology, and the rest of the electronics are implemented in NIM and CAMAC with control via a Power Macintosh computer. The software used to readout the instrument is capable of performing intensity measurements as well as spectroscopy on all 64 pixels of the device. We report on the performance of the system imaging gamma-rays in the 20–500 keV energy range and using a pin-hole collimator to form the image.

Restricted access

Summary  

99mTc compounds play a very important role in modern medicine. These compounds are among the most widely used radiopharmaceuticals. Unfortunately, due to the necessity of working with small quantities of materials, the chemistry of these materials is not completely understood. Currently, the structure of the 99mTc-DTPA (a common renal imaging agent) is unknown. In this paper, we show that X-ray absorption spectroscopy (XAS) can be used to determine the structure of Tc ycompounds b comparing XAS results to those from X-ray diffraction (XRD). Specifically, XAS data and fits for TcCl6 2-, TcOCl4-, and TcNCl4- were found to be in excellent agreement with the known structures from XRD. Finally, we show the XAS spectrum from a 77 ng sample of 99Tc-DTPA. To our knowledge this is the first XAS spectrum taken from this material. The near-edge region (XANES) was visible after a single scan on this material. This clearly indicates that we will be able to determine the local atomic structure of this material.

Restricted access

Abstract  

The thermally stimulated discharge current (TSC) and differential scanning calorimetry (DSC) spectroscopy have been recorded in 25 μm thick samples of pristine polycarbonate (PC) and zinc oxide nano particle-filled polycarbonate. Polycarbonate (PC)/zinc oxide (ZnO) nanocomposites of different mass ratio (e.g., 1, 3, and 5%) were prepared by sol–gel method, followed by film casting. The glass transition temperature of nanocomposite samples increases with increase in concentration of ZnO nano fillers. It is due to the strong interaction between inorganic and organic components. The TSC peaks of nanocomposite and pristine PC indicate the multiple relaxation process. It has been observed that the magnitude of TSC decreases with increase in concentration of nanofillers. The TSC characteristics of 5% filled nanocomposites shows exponential increase of current at higher temperature region. This increase in current is caused by formation of charge-transfer complex between inorganic phase (e.g., ZnO) and organic phase (e.g., PC). Thus, the nano material like zinc oxide transfers the charge carriers from inorganic phase to organic phase rapidly and resultant current increases exponentially. This current is known as leakage current or breakdown current. TSC peak height is observed as a function of the polarizing field. The height of TSC peak increases as the field increases in pristine PC, while TSC peak height is suppressed in nanocomposite samples. This indicates the amount of space charge is smaller in the nanocomposites with a proper addition of ZnO nano fillers than in the pristine PC.

Restricted access

Abstract  

Commercial light-cured dental composites were used in this study. Two laboratorial composites, Resilab (Wilcos/Brazil), Epricord (Kuraray/Japan) were compared under cured and uncured conditions. Thermal analysis, infrared spectroscopy and scanning electron microscopy were used to evaluate the dental composites. The mass change and heat flow signals (TG–DSC) were recorded simultaneously by using STA 409 PC Luxx (NETZSCH), in the 25–800 °C temperature range at a heating rate of 10 °C/min under nitrogen atmosphere (70 mL/min). Employing thermo-microbalance TG 209 C F1 Iris (NETZSCH) coupled to the BRUKER Optics FTIR TENSOR, the samples were analyzed by combined thermogravimetric and spectroscopic methods (TG–FTIR). The initial sample mass was about ~12 mg, the data collection have been done in the 35–800 °C temperature range at a heating rate of 20 K/min in nitrogen atmosphere (flow rate: 40 mL/min). Finally, superficial topographic was analyzed by scanning electron microscopy (SEM). Dental composite evaluation suggests a high thermal stability and inorganic content in RES D sample. Degrees of conversion (DC) values were almost the same and there was no direct relationship between DC and amount of particles and size. Similar compositions were found in all samples.

Restricted access

Abstract  

Integral electron Mössbauer spectroscopy (ICEMS) and additionally some electrochemical methods were used to characterize the passivation process of iron (low carbon steel) in sulfate, sulfate+sulfite (a possible model solution of acid rain) solutions and in phospate buffer. The phase compositions and thicknesses of the passive layers formed due to the electrochemical polarizations were analyzed in dependence on the duration of the anodic passivations and on the pH of the used electrolytes. The passive layer, as determined from the Mössbauer spectra, consists mainly of -FeOOH, however in sulfite containing sulfate aqueous solution at pH 3.5 Fe3C and despite ex-situ circumstances FeSO4·H2O was detected after the shortest polarization time. The film thickness, which was found to grow nearly linearly with polarization time in pure sulfate solution and in phospate buffer, reached a maximum of 60–160 nm (depending on pH) in sulfate+sulfite solution after a passivation time of about 4 hours. It has been proved, that HSO3 -ion, which is contained by acid rain, initiate pit formation under acid conditions and so enforces the corrosion of iron. The experimental results furthermore suggest, that not the whole oxidic layer is responsible for the passivity but only a very thin intermediate layer formed between an inner oxide layer of a cubic structure and the rhombic oxide (-FeOOH) cover.

Restricted access