Search Results

You are looking at 121 - 130 of 625 items for :

  • "resistance" x
  • Chemistry and Chemical Engineering x
  • All content x
Clear All

Abstract  

Crystallization of fat droplets in complex emulsions, which differed only by the initial structure of proteins, was studied by differential scanning calorimetry, before and after application of a whipping process. Upon cooling at 5 or 1°C min–1, the temperature needed to initiate fat crystallization was lower, and one more distinguishable crystallization peak was detected in emulsions containing caseins, in comparison with the emulsion containing pure whey proteins. Furthermore, the whipping process was accompanied by more protein depletion from the fat droplet surface, less resistance to coalescence, and a lower supercooling effect in the emulsion based on pure whey proteins.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Lisardo Núñez Regueira, M. Núñez, M. Villanueva, and B. Rial

Abstract  

The influence of agents originated in a municipal landfill on the thermal degradation of a polymeric system composed of a diglycidyl ether of bisphenol A (n=0) and 1,2-diaminecyclohexane was studied by thermogravimetric analysis (TG) in order to obtain the lifetime of this material before and after being attacked. The different data obtained were analyzed to check the resistance of these materials to chemical attack and the possibility of their use as coating materials in plants where those reagents were present. At the optimum temperature of service for this material, 373.16 K, the lifetimes obtained from the experimental results were 2633 years and 2135 years, respectively.

Restricted access

Abstract  

A logical approach to electron transport studies for barrier conduction in layered structures was adopted by thermally stimulated discharge current (TSDC) measurement. The scope and applicability of this technique to the evaluation of the thermoelectric parameters of relaxation time, detrapping energy and depolarization rates are demonstrated here. These are characterized by the controlling factors of layer resistance and the resultant thermal and voltage gradients which apply to the drift of electrons arising from both dipolar and interfacial charges. The methodologies used in this study are suitable for parametric evaluation of structured electronic devices.

Restricted access

Abstract  

Heating a milligram-sized sample of material at a constant heating rate is usually achieved by controlling the temperature of an electric-resistance furnace with a proportional integral derivative (PID) controller. Here we present a new method for constant-rate heating that is based on a semi-empirical mathematical expression relating sample temperature, heating rate, and electric power supplied to the furnace. This method uses PID control only for second-order corrections of the heating rate. The linearity of the sample temperature vs. time curves obtained by applying this method to a simple furnace setup is the same as the linearity of the curves generated by modern commercial thermogravimetric analyzers.

Restricted access

Abstract  

A thermal analysis method that separately reproduces the gas and condensed phase processes of flaming combustion in a single laboratory test is described. Anaerobic pyrolysis of solid plastics at a constant heating rate and complete thermal oxidation (nonflaming combustion) of the evolved gases provides the rate, amount, and temperatures over which heat is released by a burning solid. A physical basis for the method, the test procedure, and the relationship of flammability parameters to fire response and flame resistance of plastics are described.

Restricted access

Abstract  

The sulfidation behavior of Fe20Cr and Fe20Cr0.7Y alloys in H2–H2S atmospheres at 700 and 800C was determined by thermogravimetry. Isothermal measurements were carried out and the sulfidation kinetics were evaluated from the mass gain vs. time curves. The reaction products were examined in a scanning electron microscope and the compositions of micro-regions were determined using energy dispersive spectroscopy and X-ray diffraction. Yttrium addition increased the sulfidation resistance of the FeCr alloy.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: A. Gatti, A. Rastelli, S. Ribeiro, Y. Messaddeq, and V. Bagnato

Abstract  

Due to their excellent aesthetics, photopolymers have been extensively used in several dentistry applications. However, several problems are reported, e.g. low mechanical and abrasion resistance, shrinkage during polymerization, etc. Properties of the final restorations are intrinsically related to the polymerization stage, which can be conveniently studied by photocalorimetry. In the present work the polymerization reaction and the filler content of different photocurable commercial dental methacrylate-based composites were studied by means of photocalorimetry and thermogravimetry, respectively. The results show that the values of curing rate, the heat of polymerization and the filler content vary significantly from one composite to another.

Restricted access

Abstract  

The thermal behaviour of 2- and 4-biphenylmethanol were studied by differential scanning calorimetry (DSC). It was found that the 2-isomer shows a relatively strong resistance to crystallisation, and that it easily vitrifies on cooling. Oppositely, 4-biphenylmethanol readily crystallizes on cooling. The slow molecular mobility of 2-biphenylmethanol in the amorphous solid state was studied by DSC and by thermally stimulated depolarisation currents (TSDC). Both techniques indicate that 2-biphenylmethanol is a relatively strong glass-former, with a fragility index of ~50 in the Angell's scale.

Restricted access

Abstract  

A method has been developed for the removal of cesium from the aqueous radioactive waste using a composite ion-exchanger consisting of Copper-Ferrocyanide Powder (CFC) and Polyurethane (PU) Foam. Polyvinyl acetate has been used as a binder in the preparation of CFC-PU foam. The physical properties of CFC such as density, surface area, IR stretching frequency and lattice parameters have been evaluated and also its potassium and copper(II) content have been estimated. Optimization of loading of CFC on PU foam has been studied. The CFC-PU was viewed under microscope to find out the homogeneity of distribution. Exchange capacities of the CFC-PU foam in different media have been determined and column studies have been carried out. Studies have been undertaken on extraction of cesium from CFC foam and also on digestion of spent CFC-PU foam and immobilization of digested solution in cement matrix. The cement matrices have been characterized with respect to density, bio-resistance and leaching resistance.

Restricted access

Abstract  

The purpose of this work was to investigate the influence of titanium and yttrium dopants on chemical stability of selected Ba(Ce1−xTix)1−yYyO3 compounds. The presented results are the part of wider research concerning the crystallographic structure, microstructure, electrical and transport properties of these groups of materials. Samples of Ba(Ce1−xTix)1−yYyO3 with x=0.05, 0.07, 0.10, 0.15, 0.20, 0.30 and y=0.05, 0.10, 0.20 (for x=0.05) were prepared by solid-state reaction method. Initially, differential thermal analysis (DTA) and thermogravimetry (TG) were used for optimization of preparation conditions. Subsequently, DTA-TG-MS (mass spectrometry) techniques were applied for evaluation of the stability of prepared materials in the presence of CO2. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results were used to determine the phase composition, structure and microstructure of materials and to assist the interpretation of DTA-TG-MS results. The strong influence of Ti and Y dopants contents (x and y) on the properties was found. The introduction of Ti dopant led to the improvement of chemical stability against CO2. The lower Ti concentration the better resistance against CO2 corrosion was observed. Doping by Y had the opposite effect; the decrease of chemical stability was determined. In this case the higher Y dopant concentration the better resistance was observed. The attempt to correlate the influence of dopant on structure and chemical stability was also presented.

Restricted access