Search Results

You are looking at 151 - 160 of 2,452 items for :

  • "calorimetry" x
  • All content x
Clear All

Abstract  

Four paste mixtures with varying replacement level of the cement content by fly ash have been studied. Due to fly ash, the acceleration period decreased and a third hydration peak was noticed with isothermal calorimetry. The total heat after 7 days increased with increasing fly ash content. From 1 to 7 days, thermogravimetry showed a higher chemically bound water and Ca(OH)2-content for the pastes with fly ash. Between 7 and 14 days the calcium hydroxide started to be depleted due to the pozzolanic reaction. A unique relation was found between calcium hydroxide and total heat development.

Restricted access

Abstract  

The decomposition processes of a carburised Fe–C alloy, a Fe–C, a Fe–Cr–C and commercial SAE 52100 cast alloys (with a C content of about 1 mass%) have been studied by means of differential scanning calorimetry and dilatometry. The combination of these two experimental techniques is very powerful and allows the identification of all the stages occurring during tempering. Activation energies have been obtained by performing a Kissinger-like analysis and were used to infer the rate-determining step for each stage of decomposition. This parallel investigation allowed to determine the effect of the alloying elements on the different stages of tempering.

Restricted access

After a short survey of the development of adsorption calorimetry, the current position of this method is demonstrated in the light of some more recent results. A critical analysis is made of the areas in which adsorption calorimetry could be successfully applied in the future, either alone or, preferably, in combination with other techniques.

Restricted access

Abstract  

The miscibility of blends of poly(vinyl-chloride) (PVC) with poly(ethylene-co-vinyl acetate) (EVA) was investigated through analog calorimetry and a group contribution procedure based on the UNIQUAC model. The group contribution parameters quantifying the pair interactions between the structural features of the above polymers were calculated from experimental excess enthalpies of a series of binary mixtures of chlorocompounds, esters and hydrocarbons. Enthalpy data were also collected for the ternary mixtures (2-chloropropane+ethyl acetate+n-heptane) and (2-chlorobutane + methyl acetate+n-heptane), chosen as possible models for the studied macromolecular mixtures. The miscibility window of the PVC-EVA blends is fairly predicted by the group contribution method. It is also acceptably predicted by the enthalpic behaviour of the first ternary set, but only when the latter is calculated with binary data. A slightly narrower miscibility range is predicted by the binary interaction model. The results of these procedures are compared and the higher reliability of the group contribution procedure is emphasized in terms of its capability to reproduce the exact structure of the macromolecules and the non-univocal choice of the model molecules involved in the analog calorimetry approach.

Restricted access

Abstract  

We report in this paper the results of our thermal and thermodynamic investigation on lithium cyclohexaphosphate, Li6P6O18·5H2O between 298 and 1007 K. The different transitions with respect to temperature (successive dehydrations, solid-solid transition and melting) were studied with the help of differential thermal analysis and thermogravimetry. The different phases were characterized by X-ray diffraction and by infrared absorption. Finally, the enthalpy of these phasesvs. temperature was measured by isothermal drop calorimetry. Their heat capacities as well as the enthalpies of dehydration, of solid-solid transition and of melting were deduced. We pointed out that the lithium cyclohexaphosphate loses a molecule of water at 333 K (54.3 kJ·mol−1), three molecules of water at 413 K (151 kJ·mol−1) and the last one at 488 K (50.6 kJ·mol−1). The anhydrous lithium cyclohexaphosphate, Li6P6O18, give the polyphosphate, LiPO3, at 708 K (second order transition) and melt at 933 K (24.6 kJ·mol−1).

Restricted access

Abstract  

Heat production rates and flight speed of adult wax moths (Galleria mellonella) were investigated by means of direct calorimetry at TA=20 and 30C. Specific heat production rates were not significantly different between males and females at TA=20C (pTH=747123.7 mW g-1, n=5 for males and pTH=791169 mW g-1, n=5 for females) even with females having a higher body mass (MB=83.821.6 mg, n=9 for males and MB=146.425.7 mg, n=11 for females) and wing load. In females, heat production rates were dependent on temperature with higher heat production rates at TA=20C (pTH=791169 mW g-1, n=5) than at TA=30C (pTH=44174 mW g-1, n=6). Flight speed was also clearly correlated with TA. Both males and females flew more slowly at TA=20 than at 30C.

Restricted access

Abstract  

The glass-forming tendency and specific heat in ice cold water-quenched Ge1−xSnxSe2.5 glassy alloys with 0<x<0.6 were investigated by means of differential scanning calorimetry. The heat of fusion ΔH f, the heat ΔH c associated with the crystallization of an amorphous phase and the glass transition temperatureT g were deduced from the DSC curves. The composition dependence of glass forming ability,T g and crystallization behavior has been discussed.

Restricted access

Abstract  

The response of temperature-modulated differential scanning calorimetry (TMDSC) to irreversible crystallization of linear polymers was investigated by model calculations and compared to a number of measurements. Four different exotherms were added to a typical modulated, reversible heat-flow rate in order to simulate irreversible crystallization. It was found that the reversing heat-flow rate of the TMDSC in response to such irreversible crystallization exotherms is strongly affected by tbe shape of the transition and the phase-angle where the exotherm occurs. A comparison with the experimental data gave valuable insight into the transitions, as well as the nature of the TMDSC response which is usually limited to an analysis of the first harmonic term of the Fourier series that describes the heat-flow rate.

Restricted access

Abstract  

This paper describes some examples of the use of differential scanning calorimetry (DSC) in providing information for advanced solidification processing of metals and alloys. Spray forming, squeeze casting, grain refinement and crystallization of amorphous alloys are all discussed. DSC measurements are shown to be valuable for testing kinetic theories of nucleation and growth, and validating solidification process models.

Restricted access

Summary Crystal structures of the room-temperature (RT) and low-temperature (LT) phases of p-methylbenzyl alcohol were reexamined by single-crystal X-ray diffraction method while paying special attention to detect structural disorder in the RT phase involved in successive structural phase transitions at 179 and 210 K. In the RT phase at 250 K, positional disorder of oxygen atoms was detected in contrast to the previous structure report. The structure of the LT phase coincided to the previous one. Heat capacities were measured by adiabatic calorimetry below 350 K, which covers the structural phase transitions and fusion at 331.87 K. The structural phase transitions were of first-order and required long time for completion. The combined magnitude of entropies of transition was ca. 5 J K-1 mol-1, a part of which can be ascribed to the positional disorder observed in the structure analysis. Standard thermodynamic functions are tabulated below 350 K.

Restricted access