Search Results
Abstract
Let [A, a] be a normed operator ideal. We say that [A, a] is boundedly weak*-closed if the following property holds: for all Banach spaces X and Y, if T: X → Y** is an operator such that there exists a bounded net (T i)i∈I in A(X, Y) satisfying limi〈y*, T i x y*〉 for every x ∈ X and y* ∈ Y*, then T belongs to A(X, Y**). Our main result proves that, when [A, a] is a normed operator ideal with that property, A(X, Y) is complemented in its bidual if and only if there exists a continuous projection from Y** onto Y, regardless of the Banach space X. We also have proved that maximal normed operator ideals are boundedly weak*-closed but, in general, both concepts are different.
Abstract
Let X represent either the space C[-1,1] L p (α,β) (w), 1 ≦ p < ∞ on [-1, 1]. Then Xare Banach spaces under the sup or the p norms, respectively. We prove that there exists a normalized Banach subspace X 1 αβ of Xsuch that every f ∈ X 1 αβ can be represented by a linear combination of Jacobi polynomials to any degree of accuracy. Our method to prove such an approximation problem is Fourier–Jacobi analysis based on the convergence of Fourier–Jacobi expansions.
Differential Equations Mitchell, A. R. and Smith, Ch., An existence theorem for weak solutions of differential equations in Banach spaces, in: Nonlinear Equations in Abstract Spaces , V
Summary
Let
Abstract
The purpose of this paper is to study necessary and sufficient conditions for the Ishikawa iterative sequence with mixed errors of asymptotically quasi-nonexpansive type mappings in Banach spaces to converge to a fixed point in Banach spaces. The results presented in this paper complememt, improve and prefect the corresponding results of [1]–[4] and [7]–[9].
Summary
Some stability and convergence theorems of the modified Ishikawa iterative sequences with errors for asymptotically nonexpansive mapping in the intermediate sense and asymptotically pseudo contractive and uniformly Lipschitzian mappings in Banach spaces are obtained.
Summary
Amini-Harandi proved that alternate convexically nonexpansive mappings on non-empty weakly compact convex subsets of strictly convex Banach spaces have fixed points. We prove that Amini-Harandi's result holds also in Banach spaces with the Kadec--Klee property and the result is true for a larger class of mappings. Moreover, we show that the Alspach mapping in L 1[0,1] is not a 2-alternate convexically nonexpansive mapping.
LetK be a locally compact non-archimedean non-trivially valued field. It is proved the theorem: For a Banach space overK containing a dense subspace with the Hahn-Banach extension property one of the following two mutually exclusive conditions holds:E is a non-archimedean Banach space or the space {x?E:f(x)=0 for allf?E *} has no non-trivial continuous linear functionals. Two corollaries are also obtained.