Search Results

You are looking at 11 - 20 of 134 items for :

  • "Banach space" x
  • All content x
Clear All

Abstract  

Let [A, a] be a normed operator ideal. We say that [A, a] is boundedly weak*-closed if the following property holds: for all Banach spaces X and Y, if T: XY** is an operator such that there exists a bounded net (T i)iI in A(X, Y) satisfying limiy*, T i x y*〉 for every xX and y* ∈ Y*, then T belongs to A(X, Y**). Our main result proves that, when [A, a] is a normed operator ideal with that property, A(X, Y) is complemented in its bidual if and only if there exists a continuous projection from Y** onto Y, regardless of the Banach space X. We also have proved that maximal normed operator ideals are boundedly weak*-closed but, in general, both concepts are different.

Restricted access

Abstract  

Let X represent either the space C[-1,1] L p (α,β) (w), 1 ≦ p < ∞ on [-1, 1]. Then Xare Banach spaces under the sup or the p norms, respectively. We prove that there exists a normalized Banach subspace X 1 αβ of Xsuch that every f ∈ X 1 αβ can be represented by a linear combination of Jacobi polynomials to any degree of accuracy. Our method to prove such an approximation problem is Fourier–Jacobi analysis based on the convergence of Fourier–Jacobi expansions.

Restricted access

Differential Equations Mitchell, A. R. and Smith, Ch., An existence theorem for weak solutions of differential equations in Banach spaces, in: Nonlinear Equations in Abstract Spaces , V

Restricted access

Summary  

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $X$ \end{document} be a real Banach space and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $S(X) = \{x \in X: \|x\| = 1\}$ \end{document} be the unit sphere of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $X$ \end{document}. The parameters \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $E_{\epsilon}(X)=\sup\{\alpha_{\epsilon}(x): x \in S(X)\}$ \end{document}, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $e_{\epsilon}(X)=\inf\{\alpha_{\epsilon}(x): x \in S(X)\}$ \end{document}, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $F_{\epsilon}(X)=\sup\{\beta_{\epsilon}(x): x \in S(X)\}$ \end{document}, and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $f_{\epsilon}(X)=\inf\{\beta_{\epsilon}(x): x \in S(X)\}$ \end{document}, where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\alpha_{\epsilon}(x) = \sup\{\| x + \epsilon y \|^{2}+ \| x - \epsilon y \|^{2}: y \in S(X)\}$ \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\beta_{\epsilon}(x) = \inf\{\| x + \epsilon y \|^{2}+ \| x - \epsilon y \|^{2}: y \in S(X)\}$ \end{document}, are defined and studied. The main result is that a Banach space \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $X$ \end{document} with \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $E_{\epsilon}(X) < 2 + 2\epsilon +\frac{1}{2}\epsilon^{2}$ \end{document} for some \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $0\leq \epsilon \leq 1$ \end{document} has uniform normal structure.

Restricted access

Abstract  

The purpose of this paper is to study necessary and sufficient conditions for the Ishikawa iterative sequence with mixed errors of asymptotically quasi-nonexpansive type mappings in Banach spaces to converge to a fixed point in Banach spaces. The results presented in this paper complememt, improve and prefect the corresponding results of [1]–[4] and [7]–[9].

Restricted access

Summary  

Some stability and convergence theorems of the modified Ishikawa iterative sequences with errors for asymptotically nonexpansive mapping in the intermediate sense and asymptotically pseudo contractive and uniformly Lipschitzian mappings in Banach spaces are obtained.

Restricted access

Summary  

Amini-Harandi proved that alternate convexically nonexpansive mappings on non-empty weakly compact convex subsets of strictly convex Banach spaces have fixed points. We prove that Amini-Harandi's result holds also in Banach spaces with the Kadec--Klee property and the result is true for a larger class of mappings. Moreover, we show that the Alspach mapping in L 1[0,1] is not a 2-alternate convexically nonexpansive mapping.

Restricted access

LetK be a locally compact non-archimedean non-trivially valued field. It is proved the theorem: For a Banach space overK containing a dense subspace with the Hahn-Banach extension property one of the following two mutually exclusive conditions holds:E is a non-archimedean Banach space or the space {x?E:f(x)=0 for allf?E *} has no non-trivial continuous linear functionals. Two corollaries are also obtained.

Restricted access