Search Results

You are looking at 11 - 20 of 22 items for :

  • "Bessel functions" x
  • All content x
Clear All

In this paper, we get integral representations for the quintic Airy functions as the four linearly independent solutions of differential equation y (4) + xy = 0. Also, new integral representations for the products of these functions are obtained in terms of the Bessel functions and the Riesz fractional derivatives of these products are given.

Restricted access

Abstract  

We present a model in which scientists compete with each other in order to acquire status fortheir publications in a two-step-process: first, to get their work published in better journals, andsecond, to get this work cited in these journals. On the basis of two Maxwell-Boltzmann typedistribution functions of source publications we derive a distribution function of citingpublications over source publications. This distribution function corresponds very well to theempirical data. In contrast to all observations so far, we conclude that this distribution of citationsover publications, which is a crucial phenomenon in scientometrics, is not a power law, but amodified Bessel-function.

Restricted access

Summary  

The exact probability density function for paired counting can be expressed in terms of modified Bessel functions of integral order when the expected blank count is known. Exact decision levels and detection limits can be computed in a straightforward manner. For many applications perturbing half-integer corrections to Gaussian distributions yields satisfactory results for decision levels. When there is concern about the uncertainty for the expected value of the blank count, a way to bound the errors of both types using confidence intervals for the expected blank count is discussed.

Restricted access

complete elliptic integrals , Math. Z. , 256 ( 4 ) ( 2007 ), 895 – 911 . [3] B aricz , Á. , Functional inequalities involving Bessel and modified Bessel functions

Restricted access

asymptotique des lois stables d'indice α, lorsque α tend vers 0, Prépublication n° 289, Laboratoire de Probabilités de l'Université Paris VI. WATSON, G. N., A treatise on the theory of Bessel functions , Cambridge

Restricted access

,, Preprint no. 45, University of Wroclaw ( 1985 ). [20] W atson , G. N. , A treatise on the theory of Bessel functions , Cambridge University Press , Cambridge

Restricted access

Kent, J. , Some probabilistic properties of Bessel functions, Ann. Probab. , 6(5) (1978), 760–770. MR 58 #18750 Kent J. Some probabilistic properties of Bessel

Restricted access

Let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $J_\nu$ \end{document} be the Bessel function of order \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\nu$ \end{document}. For \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\alpha?-1$ \end{document}, the functions \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $x^{-\alpha-1}J_{\alpha+2n+1}(x)$ \end{document}, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $n=0,1,2\dots$ \end{document}, form an orthogonal system in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $L^2(x^{2\alpha+1}\,dx)$ \end{document}, but the span of such functions is not dense in this space. For a function \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $f$ \end{document}, let \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $S_k^{\alpha}f$ \end{document} denote the $kth partial sum of the Fourier--Neumann series of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $f$ \end{document}. In this paper we provide the minimal conditions on a real \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\gamma$ \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $1<p<\infty$ \end{document}, for which the means \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $R_n^{\alpha}f = \frac{\lambda_0 S_0^{\alpha}f + \cdots + \lambda_n S_n^{\alpha}f}{\lambda_0 + \cdots + \lambda_n}$ \end{document}, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\lambda_k = 2(\alpha+2k+2$ \end{document}), are uniformly bounded in the spaces \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $L^p\big(x^{2(\alpha+\gamma)+1}\,dx\big)$ \end{document}. Clearly, the convergence \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $R_n^{\alpha}f\to f$ \end{document} holds only for functions from the closure of the linear span of the orthogonal system in these spaces. As a byproduct of the main result, we obtain a characterization of the closure of the span in terms of functions whose modified Hankel transforms of order \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\alpha$ \end{document} are supported on the interval \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $[0,1]$ \end{document}.

Restricted access

. , Mansour , Z. S. and Ashour , O. A. , Sampling theorems associated with biorthogonal q-Bessel functions , J. Phys. A Math. Theor. , 43 (29), ( 2010 ). [21

Restricted access

the thermal diffusivity of the sample. Fig. 2 Sensor and sample temperature increase curves In Eqs. 4 and 5 , P 0 is the total output power, L 0 is the modified Bessel

Restricted access