Search Results

You are looking at 11 - 20 of 60 items for :

  • All content x
Clear All

. Relationship of HMW, LMW glutenin subunits and gliadins with gluten strength in Indian durum wheats. J. Plant Biochem. Biotech. 13 :51–55. Bhosale S.B. Relationship of HMW, LMW glutenin

Restricted access

Gupta, R.B., Singh, N.K., Shepherd, K.W. 1989. The cumulative effect of allelic variation in LMW and HMW glutenin subunits on dough properties in the progeny of two bread wheats. Theor. Appl. Genet. 77 :57

Restricted access
Cereal Research Communications
Authors: D. Horvat, N. Ðukić, D. Magdić, J. Mastilović, G. Šimić, A. Torbica, and D. Živančev

, M., Charmet, G., Branlard, G. 2010. The prediction of bread wheat quality: Joint use of the phenotypic information brought by technological tests and the genetic information brought by HMW and LMW glutenin subunits. Euphytica 171 :87

Restricted access

. 1994 19 19 29 Gupta, R.B., Shepherd, K.W. 1990. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutelin

Restricted access

Gupta, R.B., Shepherd, K.W. 1990. Two-step one-dimensional SDS-PAGE analysis of LMW subunits of glutenin. 1. Variation and genetic control of the subunits in hexaploid wheats. Theor. Appl. Genet. 80 :65

Restricted access

Two hundred and ninety F9 recombinant inbred lines (RILs) derived from the bread wheat cultivar Gaocheng 8901 and the waxy wheat cultivar Nuomai 1 were used in determining the high-molecular-weight glutenin subunit (HMW-GS) and waxy protein subunit combinations and their effects on the dough quality and texture profile analysis (TPA) of cooked Chinese noodles. Seven alleles were detected at Glu-1 loci. There were two alleles found at each of the Wx-A1, Wx-B1 and Wx-D1 loci. Eight allelic combinations were observed for HMW-GS, LMW-GS and waxy proteins, respectively. Both the 1/7+8/5+10 and 1/7+8/5+12 combinations contributed to dough elasticity, and the 1/7+8/5+10 combination also provided better TPA characteristics. Compared to Wx protein, HMW-GS was more important on dough alveogram properties. LMW-GS significantly affected springiness and cohesiveness; HMW-GS mainly affected the hardness; Wx×LMW-GS significantly affected the springiness, cohesiveness and chewiness; HMW-GS×Wx×LMW-GS mainly influenced the springiness and chewiness. But HMW-GS×LMW-GS only affected the spinginess. These indicated the TPA of noodles was significantly affected by the interactions between glutenin and Wx proteins.

Restricted access
Cereal Research Communications
Authors: G. Peymanpour, B. Sorkhilalehloo, K. Rezaei, G. Najafian, and B. Pirayeshfar

Ten different Iranian cultivars of bread wheat (Alamoot, Alvand, Arta, Bahar, Chamran, Darya, Dez, Pishtaz, Shahriar and Tajan) were examined for their bread-making properties. To determine the best wheat cultivar, several quality attributes such as protein content on a dry basis (PRT), wet gluten content (WGL), Zeleny (ZLN) and sodium dodecyl sulfate (SDS) sedimentation values, hardness of grain (HRD) and bread volume (BVOL) were measured. Additionally, high molecular weight glutenin subunits (HMW-GSs) and low molecular weight glutenin subunits (LMW-GSs) of the wheat cultivars were studied using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Two alleles (2 + 12 and 5 + 10) were identified at HMW-GS Glu-D1 locus. Significant correlations were found between PRT and each of the following parameters: ZLN (r = 0.67), BVOL (r = 0.73), HRD (r = 0.71) and 5 + 10 subunit (r = 0.66). Also, correlation between BVOL and HRD (r = 0.67) and that between subunit 5 + 10 and BVOL (r = 0.71) were significant. Among HMW-GSs, 5 + 10 subunit had significant influence on bread-making qualities. Significant positive correlations were obtained for LMW-GSs with HRD and ZLN. Considering the traits such as PRT, HRD, SDS, WGL, ZLN, BVOL, HMW-GS (5 + 10) and LMW-GSs, it was concluded that Bahar was the best choice for making bread. Tajan was ranked as the second best cultivar using the HRD, SDS, ZLN, BVOL, HMW-GSs and LMW-GSs data.

Restricted access

Wheat glutenins containing high and low molecular weight glutenin subunits (HMW-GS and LMW-GS) are the major determinants of wheat gluten quality. In this study, the recently developed reversed-phase ultra-performance liquid chromatography (RP-UPLC) was used to study the synthesis and accumulation patterns of glutenins during grain development of four Chinese bread wheat cultivars with different gluten quality. Developing grains were collected based on thermal times from 150 °Cd to 750 °Cd at 100 °Cd intervals, and the content of glutenin subunits and their accumulation patterns were determined by RP-UPLC as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The results showed that HMW-GS and LMW-GS synthesis were initiated currently at 250 °Cd and they displayed a gradually upregulated expression. All the HMW-GS can be detected at 250 °Cd, earlier than LMW-GS. Different glutenin subunits and genotypes showed clear accumulation diversity during grain development. Particularly, 1Dx5 + 1Dy10 in the cultivar Gaocheng 8901 and Zhongyou 9507 with superior dough properties were accumulated faster at early stages than 1Dx2 + 1Dy12 in Jingdong 8 and Zhengmai 9023 with poor dough quality, suggesting that faster accumulation rate of glutenin proteins at the early stages of grain development may contribute to the formation of superior gluten structure and dough quality.

Restricted access

High molecular weight (HMW-GS) and low molecular weight (LMW-GS) glutenin subunits play a significant role in bread making quality and extensibility, though they signify merely 10% and 40% of the entire seed storage proteins. For the estimation of bread quality on the basis of allelic difference in HMW-GS and LMW-GS at Glu-1 and 3 loci, wheat germplasm (77 genotypes) was collected from diverse agro-climatic regions of Pakistan and characterized by using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Thirty distinct allelic arrangements were identified with a sum of thirteen Glu-1 alleles. Maximum frequency of allele 1 was found in twenty-nine genotypes at Glu-A1 locus while high proportion of subunit pairs 13 + 16 and 2 + 12 was detected in 33 and 32 genotypes at Glu-B1 as well as Glu-D1 locus, respectively. Few rare alleles were also separated out. The quality scores ranged from 4–10, however highest quality score of ten was more recurrent (36.36%). A good quality score of 8 and 6 were found in 32.47% as well as 19.48% of genotypes individually. In LMW-GS, seventeen diverse combinations of alleles with aggregate of ten Glu-3 alleles were detected. Glu-A3c and Glu-B3d alleles were observed in 33 (42.85%) genotypes, encoding high sedimentation and protein contents. Hence, this will enable the breeders to utilize both glutenin subunits as biochemical indicator for selecting superior wheat genotypes possessing enhanced bread making quality.

Restricted access

Effect of heat stress on the synthesis of soluble heat shock proteins (HSPs) and the regrowth in seminal roots of three cultivated and three wild wheat genotypes was examined. In regrowth experiments, 2-d-old etiolated seedlings were exposed to 23 (control), 32, 35, 37 and 38 °C for 24 h, and 35 and 37 °C (24 h) followed by 50 °C (1 h). The lengths of the seminal roots generally decreased significantly at the end of 48 and 72 h recovery growth periods at 35, 37 and 38 °C temperature treatments compared with control. Genotypic variability was significant level at all temperature treatments for the seminal root length. Also, genotypic differences for the number of seminal roots were determined among the wheat cultivars and between the wild wheat species and the wheat cultivars at all temperature treatments; but genotypic differences among wild wheat species were only detected at 37®50 °C treatment. Acquired thermotolerance for the seminal root length is over 50% at 37®50 °C treatment. The genotypic variability of soluble heat shock proteins in seminal root tissues were analyzed by two-dimensional electrophoresis (2-DE). Total number of low molecular weight (LMW) HSPs was more than intermediate- (IMW) and high- (HMW) HSPs at high temperature treatments. The most of LMW HSPs which were generally of acidic character ranged between 14.2-30.7 kDa. The genotypes had both common (43 HSP spots between at least two genotypes and 23 HSP spots between 37 and 37®50 °C) and genotype-specific (72 HSP spots) LMW HSPs.

Restricted access