Search Results

You are looking at 11 - 20 of 291 items for :

  • All content x
Clear All

Abstract  

The properties of hydraulic mortars were studied by means of simultaneous thermal analysis (STA), according to a procedure proposed in the literature. Hydraulic limes, cement and/or slaked lime were mixed using different proportions of both inert and reactive aggregates, in order to test the effectiveness of such procedure in distinguishing the different degree of hydraulicity of such samples. The use of the normalized coordinates suggested in the literature results in overlapping of the clusters of different kinds of mortars. Modified coordinates are proposed, which give promising results in view of outlining a ‘master curve’ of hydraulicity.

Restricted access

Abstract  

Two types of raw materials, original kaolin sand OKS I and OKS II were used for experiment. They were transformed (1 h at 650 °C with 10 °C/min temperature increase) to burnt kaolin sand (BKS I and BKS II) with pozzolanic properties. Contents of decisive mineral—metakaolinite—in BKSs are as follows: BKS I (fraction below 0.06 mm) 20%; BKS II (fraction below 0.06 mm) 36% and BKS II (fraction below 0.1 mm) 31% by mass. Mortars with blends of Portland cement (PC) and BKS were prepared announced as: MK I (0.06) with 5 and 10% cement substitution by metakaolinite; MK II (0.06) with 5 and 10% cement substitution by metakaolinite and MK II (0.1) with 5, 10, 15 and 20% cement substitution by metakaolinite. The reference mortar with 100% of PC was made for comparison. All mortars were adjusted on the constant workability 180 ± 5 mm flow. Besides significant increase in compressive strengths—the refinement of pore structure in mortars with BKS connected with decreases in permeability and Ca(OH)2 content were revealed. The above facts confirm pozzolanic reaction of BKS in contact with hydrated PC and indicate perceptiveness of BKS for the use in cement-based systems as a pozzolanic addition.

Restricted access

In this paper the results of an investigation about steel fibers bond strength in mortar matrix are presented. Pull-out tests were made with four different types of fibers (hookedend, crimped, flat-end, anchoraged), the fibers were embedded individually into a cement based sample with three different embedded length (10, 15, 20 mm). Another variable parameter of the experiment was the strength of the matrix (three different mixture were used), and hooked-end fibers with higher tensile strength and zinc surface coating were tested also. During the tests pull-out force and displacement were measured.

Restricted access

Abstract  

This work presents the relation between the pozzolanic activity, the hydration heat and the compressive strength developed by blended mortars containing 10 and 35% of a spent fluid catalytic cracking catalyst (FCC). The results show that, in comparison with 100% Portland cement mortar, a mortar with 10% FCC increases the hydration heat all over the period of testing. This hydration heat increasing is due to the pozzolanic effect, therefore the resulting compressive strength is higher than the reference mortar. Whereas, in a mortar with 35% of FCC, the hydration heat is higher than 100% PC mortar, until 10 h of testing. After this age, the substitution degree predominates over the pozzolanic activity, showing in this case, lower hydration heat and developing lower compressive strength than 100% PC mortar.

Restricted access

Abstract  

The chemical corrosion and the mechanical strength were studied in cement mortars containing an additive of FBCC under conditions of long-term action of sodium sulphate solution or saturated brine. The observations have shown that saturated brine is a more aggressive agent, since it leaches Ca(OH)2 and contributes to the decomposition of the C-S-H phase thus worsening the compressive strength as compared with that of mortars kept in water. The addition of 20% FBCC inhibits the leaching process and counteracts the decrease of compressive strength in mortars kept in brine. On the other hand, sodium sulphate solution changes favourably the mortar microstructure, increases of the content of small pores and improves both the compressive and the flexural strengths, as compared with those of a mortar kept in water.

Restricted access

Abstract  

The influence of spent catalyst from catalytic cracking in fluidized bed on the hydration process of cement and the properties of cement mortars were studied. The spent catalyst was used as an additive to cement in the mortars (10 and 20% of cement). The samples of mortars kept in water for28 days, then they were placed in sulfate and chloride media for 2 months (the control samples were kept in water for 3 months). After this time they were subjected to bending strength and compressive strength determinations. Thermogravimetric and infrared absorption studies were performed and capillary elevation, capability of binding heavy metals, and changes in mass and apparent density were determined too. The studies disclosed the pozzolana nature of spent catalyst and its influence on cement mortars being in contact with corrosive media.

Restricted access

Abstract  

This paper reports an experimental study on the magnesium sulphate resistance of mortar specimens incorporating 0, 10 and 20% of metakaolin (MK). The evidence of the attack was evaluated through the content of calcium hydroxide (portlandite) and formation of magnesium hydroxide (brucite) by thermal analysis (thermogravimetric and derivative thermogravimetric analysis). The mechanical degradation of the mortar specimens was evaluated through splitting tensile tests after 200 days of exposition to the magnesium solution. The addition of metakaolin resulted in a reduction in the content of calcium hydroxide and in a smaller formation of brucite in comparison with reference mixture. A tensile strength loss of about 7% was observed for the metakaolin mortars submitted to the magnesium solution attack for 200 days.

Restricted access

Abstract  

Long aged mortars from ancient hydraulic constructions of Sicily, i.e. the Roman aqueduct of Thermae and the Punic cisterns and traditional water supply systems in Pantelleria, have been characterised by means of XRD analysis, optical microscopy and simultaneous thermal analysis to correlate the hydraulic properties to the texture and to their different role in the construction, i.e. lining, covering, roofing and joint mortars. According to a procedure proposed in the literature all of the samples, but two air hardening ones, show high hydraulicity, which somehow can be related to the characteristics of aggregates.

Restricted access

Abstract  

Plasters and mortars taken from the walls of the ancient hospital ‘San Matteo’ of Pavia (Italy), were investigated with thermal and other techniques. From the data collected, two groups of materials were brought out: the first one, containing the plasters, is remarkably richer in calcite than the second group, formed by the mortars. These findings allow one to relate these groups to two historical periods: the middle of the XV century, and the end of the XVIII century. Some hypotheses may also be made on the compositions of the binding/inert fractions adopted in preparing these materials in the building yards of the two periods.

Restricted access

Abstract  

The present study is based on the influence of the addition of a pozzolanic material as a result of the activation of an industrial waste coming from the Spanish paper industry on the heating as well as hydration heat of the cement mortars made with 10 or 20% of active addition. Once the sludge has been calcined at different temperatures (700–800°C) and stays in furnace (2 and 5 h), the calcined products showed high pozzolanic activity. The maximum activity corresponded to the paper sludge calcined at 700°C for 2 h (S1). Besides, it can be proved that there was an increase both of the heating and also of the hydration heat in the first 23–25 h for both additions (10 and 20% of S1) regarding the reference cement mortar. This behaviour would be related to the influence of different effects: filler and pozzolanic during the first hours of reaction, and by the dilution effect for longer hydration times, mainly when 20% of S1 was added.

Restricted access