Search Results

You are looking at 11 - 20 of 60 items for :

  • "central limit theorem" x
  • All content x
Clear All

Abstract  

Let (X k) be a sequence of independent r.v.’s such that for some measurable functions gk : R kR a weak limit theorem of the form

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$g_k (X_1 , \ldots ,X_k )\xrightarrow{\mathcal{L}}G$$ \end{document}
holds with some distribution function G. By a general result of Berkes and Csáki (“universal ASCLT”), under mild technical conditions the strong analogue
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{1} {{D_N }}\sum\limits_{k = 1}^N {d_k I\left\{ {g_k (X_1 , \ldots ,X_k ) \leqq x} \right\} \to G(x)} a.s.$$ \end{document}
is also valid, where (d k) is a logarithmic weight sequence and D N = ∑k=1 N d k. In this paper we extend the last result for a very large class of weight sequences (d k), leading to considerably sharper results. We show that logarithmic weights, used traditionally in a.s. central limit theory, are far from optimal and the theory remains valid with averaging procedures much closer to, in some cases even identical with, ordinary averages.

Restricted access

Хорошо известно, что в ероятностное поведе ние лакунарного тригоно метрического ряда {cos 2πn kx} тесно связ ано с «критическим» у словием лакунарности(*)

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\frac{{n_{k + 1} }}{{n_k }} \geqq 1 + \frac{{c_k }}{{\sqrt k }},c_k \to \infty$$ \end{document}
. Например, если выполн ено условие (*), то последовательность {cos2πn kx} удовлетворяет центральной предель ной теореме, и при этом условие (*) не может быть ослабле но. Для последовательносте й, удовлетворяющих (*), и звестны и другие результаты по добного рода, в то время как для более медленно расту щих последовательносте й {nk} не известно, по-видимому, ничего. В с татье развит метод, ко торый при помощи мартингально й техники позволяет проводить исследование систем {cos 2πnkx} для последовательно стей, не удовлетворяю щих условию (*). Получено про стое объяснение условия (*), изучено, как «пропа-дает» центральная предель ная теорема при посте пенном ослаблении условия (*) и дока-заны некоторые центральн ые предельные теорем ы в отсутствие этого усл овия. Получены другие предельные те оремы для {cos 2πnkx}, напри мер, закон повторного лог арифма и принципы инвариантн ости.

Restricted access